
 Advanced search

Linux Journal Issue #28/August 1996

Features

Beyond Your First Shell Script by Brian Rice
How to write versatile, robust Bourne shell scripts that will run
flawlessly under other shells as well.

Diff, Patch, and Friends by Michael K Johnson
De-mystifying patches and the tools used to create and apply
them.

Auto-loading Kernel Modules by Preston F. Crow
Make your system leaner by modularizing the kernel.

The Cold, Thin Edge by Todd Graham Lewis
Taking the Shell Paradigm to its Brutal Limits. Whether you use
Tcl, shells, Perl, or C, there is usually an option whereby tools
from one programming environment can be imported into
another. Here's how to “push the envelope”.

Basic fvwm Configuration, Part 2 by John M Fisk
Customizing the Desktop. Organize and customize those pop-up
menu entries.

News and Articles

Mobile-IP by Ben Lancki, Abhijit Dixit, and Vipul Gupta
Transparent Host Migration on the Internet

Graphing with Gnuplot and Xmgr by Andy Vaught
Two graphing packages available under Linux

Certifying Linux
by Heiko Eissfeldt

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/028/1299.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1237.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1279.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1291.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1236.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1271.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/0131.html

Columns

Letters to the Editor
Stop the Presses
Kernel Korner Device Drivers Concluded
Book Review Bandits on the Information Superhighway
Book Review World Wide Web Journal, Issue One
Book Review Civilizing Cyberspace
New Products

Directories & References

Consultants Directory

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/028/1293.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1311.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1287.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1302.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/5538.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1301.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/newprod.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/consult.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Beyond Your First Shell Script

Brian Rice

Issue #28, August 1996

As your shell scripts get more complex, you'll need to put a directive at the
beginning to tell the operating system what sort of shell script this is.

So here it is—your first shell script:

lpr weekly.report
Mail boss < weekly.report
cp weekly.report /floppy/report.txt
rm weekly.report

You found yourself repeating the same few commands over and over: print out
your weekly report, mail a copy to the boss, copy the report onto a floppy disc,
and delete the original. So it was a big time saver when someone showed you
that you can place those commands into a text file (“dealwithit”, for instance),
mark the file as executable with chmod +x dealwithit, and then run it just by
typing its filename.

But you'd like to know more. This script you've written is not very robust; if you
run it in the wrong directory, you get a cascade of ugly error messages. And the
script is not very flexible either—if you'd like to print, mail, backup, and delete
some other file, you'll have to create another version of the script. Finally, if
someone asks you what kind of shell script you've written—Bourne? Korn? C
shell?—you can't say. Then read on.

Last question first: what kind of shell script is this? Actually, the script above is
quite generic. It uses only features common to all the shells. Lucky you. As your
shell scripts get more complex, you'll need to put a directive at the beginning to
tell the operating system what sort of shell script this is.

#!/bin/bash

The #! should be the first two characters of the file, and the rest should be the
complete pathname of the shell program you intend this script to be run by.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Astute readers will note that this line looks like a comment, and, since it begins
with a # character, it is one, syntactically. It's also magic.

When the operating system tries to run a file as a program, it reads the first few
bytes of the file (its “magic number”) to learn what kind of file it is. The byte
pattern #! means that this is a shell script, and that the next several bytes, up to
a newline character, make up the name of the binary that the OS should really
run, feeding it this script file.

Paranoid programmers will make sure that no spaces are placed after the
executable name on the #! line. You are paranoid, aren't you? Good. Also,
notice that running a shell script requires that it be read first; this is why you
must have both read and execute permission to run a shell script file, while you
need only execute permission to run a binary file.

In this article, we will focus on writing programs for the Bourne shell and its
descendants. A Bourne shell script will run flawlessly not only under the Bourne
shell, but also under the Korn shell, which adds a variety of features for
efficiency and ease of use. The Korn shell itself has two descendents of its own:
the POSIX standard shell, which is virtually identical to the Korn shell; and a big
Linux favorite, the Bourne Again shell. The Bourne Again shell (“bash”) adds
mostly interactive features from the descendants of the C shell, Bill Joy's
attempt to introduce a shell that would use C-like control structures. What a
great idea! Due to a few good reasons, most shell programming has followed
the Bourne shell side of the genealogical tree. But people love the C shell's
interactive features, which is why they too were incorporated into the Bourne
Again shell.

Let me rephrase: do not write C shell scripts. Continue to use the C shell, or its
descendant tcsh, interactively if you care to; your author does. But learn and
use the Bourne/Korn/bash shells for scripting.

So here is our shell script now:

#!/bin/bash
lpr weekly.report
Mail boss < weekly.report
cp weekly.report /floppy/report.txt
rm weekly.report

If we run this script in the wrong directory, or if we accidentally name our file
something other than “weekly.report”, here's what happens:

lpr: weekly.report: No such file or directory
./dealwithit: weekly.report: No such file or directory
cp: weekly.report: No such file or directory
rm: weekly.report: No such file or directory

and we get a bunch of “Permission denied” messages if we run the script when
the permissions on the file are wrong. Bleah. Couldn't we do a check at the
beginning of the program, so that if something is wrong we can avert all these
ugly messages? Indeed we can, using (surprise!) an if.

It occurs to us that if cat weekly.report works, so will most of the things our
script wants to do. The shell's if statement works just as this thought suggests:
you give the if statement a command to try, and if the command runs
successfully, it will run the other commands for you too. You also can specify
some commands to run if the first command—called the “control command”--
fails. Let's give it a try:

#!/bin/bash
if
 cat weekly.report
then
 lpr weekly.report
 Mail boss < weekly.report
 cp weekly.report /floppy/report.txt
 rm weekly.report
else
 echo I see no weekly.report file here.
fi

The indentation is not mandatory, but does make your shell scripts easier to
read. You can put the control command on the same line as the if keyword
itself.

This new version works great when there's an error. We get only one “No such
file or directory” message, an improvement over four, and then our helpful
personalized error message appears. But the script isn't so hot when it works:
now we get the contents of weekly.report dumped to the screen as a
preliminary. This is, after all, what cat does. Couldn't it just shut up?

You may know something about redirecting input and output in the world of
Unix: the > character sends a command's output to a file, and the < character
arranges for a command to get its input from a file, as in our Mail command. So
if only we could send the cat command's output to the trash can instead of to a
file... Wait! Maybe there's a trash can file somewhere. There is: /dev/null. Any
output sent to /dev/null dribbles out the back of the computer. So let's change
our cat command to:

cat weekly.report >/dev/null

Because you are paranoid, you may be wondering whether sending output to
the trash can will affect whether this command succeeds or fails. Since /dev/
null always exists and is writable by anyone, it will not fail.

Now our script is much quieter. But when cat fails, we still see the

cat: weekly.report: No such file or directory

error message. Why didn't this go into the trash can too? Because error
messages flow separately from output, even though they usually share a
common destination: the screen. We redirected standard output, but said
nothing about errors. To redirect the errors, we can:

cat weekly.report >/dev/null 2>/dev/null

Just as > means “Send output here,” 2> means “Send errors here.” In fact, > is
really just a synonym for 1>. Another, terser way to say the above command is
this:

cat weekly.report >/dev/null 2>&1

The incantation 2>&1 means “Send errors (output stream number 2) to the
same place ordinary output (output stream number 1) is going to.” By the way,
this 2> jazz only works in the Bourne shell and its descendants. The C shell
makes it annoying to separate errors from output, which is one of the reasons
people avoid programming in it.

You may be saying to yourself: “This cat trick is fun, but isn't there some way I
can just give a true-or-false expression? Like, either the file exists and is
readable, or not?” Yes, you can. There is a command whose whole job is to
succeed or fail depending on whether the expression you give is true or not:
test. This is why your test programs called “test” never work, by the way. Here is
our program, rewritten to use test:

#!/bin/bash
if
 test -r weekly.report
then
 lpr weekly.report
 Mail boss < weekly.report
 cp weekly.report /floppy/report.txt
 rm weekly.report
else
 echo I see no weekly.report file here.
fi

The test command's -r operator means, “Does this file exist, and can I read it?”
test is quiet regardless of whether it succeeds or fails, so there's no need for
anything to get sent to /dev/null.

Test also has an alternative syntax: you can use a [character instead of the
word test, so long as you have a] at the end of the line. Be sure to put a space
between any other characters and the [and the] characters! We can make our
if look like this now:

if [-r weekly.report]

Hey, now that looks like a program! Even though we're using brackets, this is
still the test command. There are lots of other things test can do for you; see its
man page for the complete list. For example, we seem to recall that what lets
you delete a file is not whether you can read it, but whether the directory it sits
in gives you write permission. So we can re-write our script like this:

#!/bin/bash
if [! -r weekly.report]
then
 echo I see no weekly.report file here.
 exit 1
fi
 if [! -w .]
then
 echo I will not be able to delete
 echo weekly.report for you, so I give up.
 exit 2
fi
Real work omitted...

Each test now has a ! character in it, which means “not”. So the first test
succeeds if the weekly.report is not readable, and the second succeeds if the
current directory (“.”) is not writable. In each case, the script prints an error
message and exits. Notice that there's a different number fed to exit each time.
This is how Unix commands (including if itself!) tell whether other commands
succeed: if they exit with any exit code other than 0, they didn't. What each
non-zero number (up to 255) means, other than “Something bad happened,” is
up to you. But 0 always means success.

If this seems backwards to you, give yourself a cookie. It is backwards. But
there's a good design reason for it, and it's a universal Unix-command
convention, so get used to it.

Notice also that our real work no longer has an if wrapped around it. Our script
will only get that far if none of our error conditions are detected. So we can just
assume that all those error conditions are not in fact present! Real shell scripts
exploit this property ruthlessly, often beginning with screenfuls of tests before
any real work is done.

Now that we've made our script more robust, let's work on making it more
general. Most Unix commands can take an argument from their command lines
that tells them what to do; why can't our script? Because it has “weekly.report”
littered all through it, that's why. We need to replace weekly.report with
something that means “the thing on the command line.” Meet $1.

#!/bin/bash
if [! -r $1]
then
 echo I see no $1 file here.
 exit 1
fi
if [! -w .]
then

 echo I will not be able to delete $1 for you.
 echo So I give up.
 exit 2
fi
lpr $1
Mail boss < $1
and so forth...
exit 0

$1 means the first argument on the command line. Yes, $2 means the second,
$3 means the third, and so on. What's $0? The name of the command itself. So
we can change our error messages so that they look like this:

echo $0: I see no $1 file here.

Ever noticed that Unix error messages introduce themselves? That's how.

Unfortunately, now there's a new threat to our program: what if the user
forgets to put an argument on the command line? Then the right thing for $1 to
have in it would be nothing at all. We might be back to our cascade of error
messages, since a lot of commands, such as rm, complain at you if you put
nothing at all on their command lines. In this program's case, it's even worse,
since the first time $1 is used is as an argument to test -r, and test will give you
a syntax error if you ask it to test -r nothing at all. And what does lpr do if you
put nothing at all on its command line? Try it! But be prepared; you could end
up with a mess.

Fortunately, test can help. Let's put this as the very first test in our program,
right after the #!/bin/bash:

if [-z "$1"]
then
 echo $0: usage: $0 filename
 exit 3
fi

Now if the user puts nothing on the command line, we print a usage message
and quit. The -z operator means “is this an empty string?”. Notice the double
quotes around the $1: they are mandatory here. If you leave them out, test will
give an error message in just the situation we are trying to detect. The quotes
protect the nothing-at-all stored in $1 from causing a syntax error.

This if clause appears at the very top of many, many shell scripts. Among its
other benefits, it relieves us from having to wrap $1 in quote marks later in our
program, since if $1 were empty we would have exited at the start. In fact, the
only time quotes would still be necessary would be if $1 could contain
characters with a special meaning to the shell, such as a space or a question
mark. Filenames don't, usually.

What if we want our script to be able to take a variable number of arguments?
Most Unix commands can, after all. One way is clear: we could just cut and
paste all the stuff in our shell script, so we'd have a bunch of commands that
dealt with $1, then a bunch of commands that dealt with $2, and so forth.
Sound like a good idea? No? Good for you; it's a terrible idea.

First of all, there would be some fixed upper limit on the number of arguments
we could handle, determined by when we got tired of cutting, pasting, and
editing our script. Second, any time you have many copies of the same code,
you have a quality problem waiting to happen. You'll forget to make a change,
or fix a bug, all of the many places necessary. Third, we often hand wildcards,
like *, to Unix commands on their command lines. These wildcards are
expanded into a list of filenames before the command runs! So it's very easy to
get a command line with more arguments than some arbitrary, low limit.

Maybe we could use some kind of arithmetic trick to count through our
arguments, like $i or something. This won't work either. The expression $i

means “the contents of the variable called i”, not “the i'th thing on the
command line.” Furthermore, not all shells let you refer to command-line words
after $9 at all, and those that do make you use ${10}, ${11}, and so forth.

So what do we do? This:

while [! -z "$1"]
do
 # do stuff to $1
 shift
done

Here's how we read that script: “While there's something in $1, we mess with it.
Immediately after we finish messing with it, we do the shift command, which
moves the contents of $2 into $1, the contents of $3 into $2, and so forth,
regardless of how many of these command-line arguments there are. Then we
go back and do it all again. We know we've finished when there's nothing at all
in $1.”

This technique allows us to write a script that can handle any number of
arguments, while only dealing with $1 at a time. So now our script looks like
this:

#!/bin/bash
while [! -z "$1"]
do
 # do stuff to $1
 if [! -r $1]
 then
 echo $0: I see no $1 file here.
 exit 1
 fi
 # omitted test...
 lpr $1
 Mail boss < $1

 # and so forth...
 shift
done
exit 0

Notice that we nested if inside while. We can do that all we like. Also notice that
this program quits the instant it finds something wrong. If you would like it to
continue on to the next argument instead of bombing out, just replace an exit

with:

shift
continue

The continue command just means “Go back up to the top of the loop right
now, and try the control command again.” Thought question: why did we have
to put a shift right before the continue?

Here's a potential problem: we've made it easy for someone to use this
program on files that live in different directories. But we're only testing the
current directory for writability. Instead, we should do this:

if [! -w `dirname $1`]
then
 echo $0: I will not be able to delete $1 for you.
 # ...

The dirname command prints out what directory a file is in, judging from its
pathname. If you give dirname a filename that doesn't start with a directory, it
will print “.”--the current directory. And those backquotes? Unlike all other kinds
of quotation marks, they don't mean “this is really all one piece ignore spaces.”
Instead, backquotes—also called “grave accents”--mean “Run the command
inside the backquotes before you run the whole command line. Capture all of
the backquoted command's output, and pretend that was what appeared on
the larger command line instead of the junk in backquotes.” In other words, we
are substituting a command's output into another command line.

So here is the final version of our shell script:

#!/bin/bash
while [! -z "$1"]
do
 if [! -r $1]
 then
 echo $0: I see no $1 file here.
 shift
 continue
 fi
 if [! -w `dirname $1`]
 then
 echo $0: I will not be able to delete $1 for you.
 shift
 continue
 fi
 lpr $1
 Mail boss < $1
 cp $1 /floppy/`basename $1`
 rm $1

 shift
done
exit 0

An exercise for the reader: what does `basename $1` do?

Now there are only two other techniques you need to know to meet the vast
majority of your scripting needs. First, suppose you really do need to count.
How do we do the equivalent of a C for loop? Here's the traditional Bourne shell
way:

i=0
upperlim=10
while [$i -lt $upperlim]
do
 # mess with $i
 i=`expr $i + 1`
done

Notice that we did not use the for keyword. for is for something else entirely.
Instead, here we initialize a variable i to 0, then we enter and remain in the loop
as long as the value in i is less than 10. (Fortran programmers will recognize -lt
as the less-than operator; guess why > is not used in this context.) The rather
mysterious line

i=`expr $i + 1`

calls the expr command, which evaluates arithmetic expression. We stuff expr's
output back into i using backquotes.

Ugly, isn't it? And not especially fast either, since we are running a command
every time we want to add 1 to i. Can't the shell just do the arithmetic itself? If
the shell is the Bourne shell, no, it can't. But the Korn shell can:

((i=i+1))

Use that syntax if it works, and if you don't need portability. The bash shell uses
something similar:

i=$(($i+1))

which is a bit more portable (it even works in the Korn shell), since it is specified
by POSIX, but still won't work for some non-POSIX bourne shells.

So what does for do? It allows you to wade through a list of items, assigning a
variable to each element of the list in turn. Here's a trivial example:

for a in Larry Moe Curly
do
 echo $a
done

which would print

Larry
Moe
Curly

Less trivially, we can use this to handle the case where we want to do
something for each word in a variable:

mylist="apple banana cheese rutabaga"
for w in $mylist
do
 # mess with $w
done

or for each file matched by a shell wildcard pattern:

for f in /docs/reports/*.txt
do
 pr -h $f $f | lpr
done

or for each word in the output of a command:

for a in `cat people.txt`
do
 banner $a
done

Here's how you can use for to simulate the C for you know and love:

for i in 0 1 2 3 4 5 6 7 8 9 10 11
do
 # mess with $i
done

Of course, it'd be very difficult to have a variable upper limit with this syntax,
which is why we usually use the while loop shown above.

Congratulations! You've now seen what's at work in the vast bulk of practical
shell scripts. Go forth and save time!

Brian Rice (rice@kcomputing.com) s Member of Technical Staff with K
Computing, a nationwide Unix and Internet training firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rice@kcomputing.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Diff, Patch, and Friends

Michael K. Johnson

Issue #28, August 1996

“Kernel patches” may sound like magic, but the two tools used to create and
apply patches are simple and easy to use—if they weren't, some Linux
developers would be too lazy to use them...

Diff is designed to show you the differences between files, line by line. It is
fundamentally simple to use, but takes a little practice. Don't let the length of
this article scare you; you can get some use out of diff by reading only the first
page or two. The rest of the article is for those who aren't satisfied with very
basic uses.

While diff is often used by developers to show differences between different
versions of a file of source code, it is useful for far more than source code. For
example, diff comes in handy when editing a document which is passed back
and forth between multiple people, perhaps via e-mail. At Linux Journal, we
have experience with this. Often both the editor and an author are working on
an article at the same time, and we need to make sure that each (correct)
change made by each person makes its way into the final version of the article
being edited. The changes can be found by looking at the differences between
two files.

However, it is hard to show off how helpful diff can be in finding these kinds of
differences. To demonstrate with files large enough to really show off diff's
capabilities would require that we devote the entire magazine to this one
article. Instead, because few of our readers are likely to be fluent in Latin, at
least compared to those fluent in English, we will give a Latin example from
Winnie Ille Pu, a translation by Alexander Leonard of A. A. Milne's Winnie The
Pooh (ISBN 0-525-48335-7). This will make it harder for the average reader to
see differences at a glance and show how useful these tools can be in finding
changes in much larger documents.

Quickly now, find the differences between these two passages:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Ecce Eduardus Ursus scalis nunc tump-tump-tump
occipite gradus pulsante post Christophorum
Robinum descendens. Est quod sciat unus et solus
modus gradibus desendendi, non nunquam autem
sentit, etiam alterum modum exstare, dummodo
pulsationibus desinere et de no modo meditari
possit. Deinde censet alios modos non esse. En,
nunc ipse in imo est, vobis ostentari paratus.
Winnie ille Pu.

Ecce Eduardus Ursus scalis nunc tump-tump-tump
occipite gradus pulsante post Christophorum
Robinum descendens. Est quod sciat unus et solus
modus gradibus descendendi, nonnunquam autem
sentit, etiam alterum modum exstare, dummodo
pulsationibus desinere et de eo modo meditari
possit. Deinde censet alios modos non esse. En,
nunc ipse in imo est, vobis ostentari paratus.
Winnie ille Pu.

You may be able to find one or two changes after some careful comparison, but
are you sure you have found every change? Probably not: tedious, character-
by-character comparison of two files should be the computer's job, not yours.

Use the diff program to avoid eyestrain and insanity:

diff -u 1 2
--- 1 Sat Apr 20 22:11:53 1996
+++ 2 Sat Apr 20 22:12:01 1996
 -1,9 +1,9
 Ecce Eduardus Ursus scalis nunc tump-tump-tump
 occipite gradus pulsante post Christophorum
 Robinum descendens. Est quod sciat unus et solus
-modus gradibus desendendi, non nunquam autem
+modus gradibus descendendi, nonnunquam autem
 sentit, etiam alterum modum exstare, dummodo
-pulsationibus desinere et de no modo meditari
+pulsationibus desinere et de eo modo meditari
 possit. Deinde censet alios modos non esse. En,
 nunc ipse in imo est, vobis ostentari paratus.
 Winnie ille Pu.

There are several things to notice here:

• The file names and last dates of modification are shown in a “header” at
the top. The dates may not mean anything if you are comparing files that
have been passed back and forth by e-mail, but they become very useful
in other circumstances.

• The file names (in this case, 1 and 2—are preceded by --- and +++.
• After the header comes a line that includes numbers. We will discuss that

line later.
• The lines that did not change between files are shown preceded by

spaces; those that are different in the different files are shown preceded
by a character which shows which file they came from. Lines which exist
only in a file whose name is preceded by --- in the header are preceded by
a - character, and vice-versa for lines preceded by a + character. Another
way to remember this is to see that the lines preceded by a - character

were removed from the first (---) file, and those preceded by a + character
were added to the second (+++) file.

• Three spelling changes have been made: “desendendi” has been corrected
to “descendendi”, “non nunquam” has been corrected to “nonnunquam”,
and “no” has been corrected to “eo”.

Perhaps the main thing to notice is that you didn't need this description of how
to interpret diff's output in order to find the differences. It is rather easy to
compare two adjacent lines and see the differences.

It's not always this easy

Unfortunately, if too many adjacent lines have been changed, interpretation
isn't as immediately obvious; but by knowing that each marked line has been
changed in some way, you can figure it out. For instance, in this comparison,
where the file 3 contains the damaged contents, and file 4 (identical to file 2 in
the previous example) contains the correct contents, three lines in a row are
changed, and now each line with a difference is not shown directly above the
corrected line:

diff -u 3 4
--- 3 Sun Apr 21 18:57:08 1996
+++ 4 Sun Apr 21 18:56:45 1996
 -1,9 +1,9
 Ecce Eduardus Ursus scalis nunc tump-tump-tump
 occipite gradus pulsante post Christophorum
 Robinum descendens. Est quod sciat unus et solus
-modus gradibus desendendi, non nunquam autem
-sentit, etiam alterum nodum exitare, dummodo
-pulsationibus desinere et de no modo meditari
+modus gradibus descendendi, nonnunquam autem
+sentit, etiam alterum modum exstare, dummodo
+pulsationibus desinere et de eo modo meditari
 possit. Deinde censet alios modos non esse. En,
 nunc ipse in imo est, vobis ostentari paratus.
 Winnie ille Pu.

It takes a little more work to find the added mistakes; “nodum” for “modum”
and “exitare” for “exstare”. Imagine if 50 lines in a row had each had a one-
character change, though. This begins to resemble the old job of going through
the whole file, character-by-character, looking for changes. All we've done is
(potentially) shrink the amount of comparison you have to do.

Fortunately, there are several tools for finding these kinds of differences more
easily. GNU Emacs has “word diff” functionality. There is also a GNU “wdiff”
program which helps you find these kinds of differences without using Emacs.

Let's look first at GNU Emacs. For this example, files 5 and 6 are exactly the
same, respectively, as files 3 and 4 before. I bring up emacs under X (which
provides me with colored text), and type:

M-x ediff-files RET
5 RET
6 RET

In the new window which pops up, I press the space bar, which tells Emacs to
highlight the differences. Look at Figure 1 and see how easy it is to find each
changed word.

Figure 1. ediff-files 5 6

GNU wdiff is also very useful, especially if you aren't running X. A pager (such as
less) is all that is required—and that is only required for large differences. The
exact same set of files (5 and 6), compared with the command wdiff -t 5 6, is
shown in Figure 2.

Figure 2. wdiff -t 5 6

If you are getting extra character sequences like ESC[24 instead of getting
underline and reverse video, it's probably because you are using less, which by
default doesn't pass through all escape characters. Use less -r instead, or use
the more pager. Either should work.

wdiff uses the termcap database (that's what the -t option is for) to find out
how to enable underline and reverse video, and not all termcap entries are
correct. In some instances, I've found that the linux termcap entry works well
for other terminals, since the codes for turning underline and reverse video on
and off don't differ very much across terminals. To use the linux termcap entry,
you can do this:

TERM=linux wdiff -t 5 6 | less -r

This will work only with bourne shell derivatives such as bash, not with csh or
tesh. But since you need to do this only to correct for a broken termcap
database, this limitation shouldn't be too much of a problem.

wdiff isn't always built with the termcap support needed to underline and
reverse video, and it's not always what you want even if you have a working
termcap database, so there's an alternate output format that is just as easy to
understand. We'll kill two birds with one stone by also showing off wdiff's ability
to deal with re-wrapped paragraphs while showing off its ability to work
without underline and reverse video. File 8 is the same as the correct file 2,
shown at the beginning of this article, but file 7 (the corrupted one) now has
much shorter lines, which makes them even harder to compare “by eye”:

Ecce Eduardus Ursus scalis
nunc tump-tump-tump occipite
gradus pulsante post
Christophorum Robinum

https://secure2.linuxjournal.com/ljarchive/LJ/028/1237f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1237f2.html

descendens. Est quod sciat
unus et solus modus gradibus
desendendi, non nunquam autem
sentit, etiam alterum nodum
exitare, dummodo pulsationibus
desinere et de no modo
meditari possit. Deinde censet
alios modos non esse. En, nunc
ipse in imo est, vobis
ostentari paratus.
Winnie ille Pu.

wdiff is not confused by the differently-wrapped lines. The command wdiff 7 8

produces this output:

Ecce Eduardus Ursus scalis nunc tump-tump-tump
occipite gradus pulsante post Christophorum
Robinum descendens. Est quod sciat unus et solus
modus gradibus
[-desendendi, non nunquam-]
{+descendendi, nonnunquam+} autem
sentit, etiam alterum [-nodum
exitare,-] {+modum exstare,+} dummodo
pulsationibus desinere et de [-no-] {+eo+}
modo meditari
possit. Deinde censet alios modos non esse. En,
nunc ipse in imo est, vobis ostentari paratus.
Winnie ille Pu.

Remember the + and - characters? They mean the same thing with wdiff as they
mean with diff. (Consistent user interfaces are wonderful.)

Chunks

Near the beginning of this article, I promised to explain this line:

 -1,9 +1,9

that describes the chunk that diff found differences in. In each file, the chunk
starts on line 1 and extends for 9 lines beyond the first line. However, with this
small example, the chunk shown in the example contains the whole file. With
larger files, only the lines around the changes, called the context, are shown.

In files 9 and 10, I've inserted a lot of blank lines in the middle of the paragraph,
in order to show what multiple chunks look like. File 9 is damaged, file 10 is
correct (except for the blank lines in the middle of the paragraph):

<h3>diff -u 9 10</h3>
--- 9 Mon Apr 22 15:46:37 1996
+++ 10 Mon Apr 22 15:46:14 1996
 -1,7 +1,7
 Ecce Eduardus Ursus scalis nunc tump-tump-tump
 occipite gradus pulsante post Christophorum
 Robinum descendens. Est quod sciat unus et solus
-modus gradibus desendendi, non nunquam autem
+modus gradibus descendendi, nonnunquam autem
 -33,7 +33,7
 sentit, etiam alterum modum exstare, dummodo
-pulsationibus desinere et de no modo meditari
+pulsationibus desinere et de eo modo meditari
 possit. Deinde censet alios modos non esse. En,

 nunc ipse in imo est, vobis ostentari paratus.
 Winnie ille Pu.

So you see that we have one seven-line chunk starting at line 1 and one seven-
line chunk starting at line 33 are shown here.

You should notice several things here:

• There is one header at the top of each chunk.
• Blank lines are included as part of a chunk's context.
• Lines that are not changed and that are not within three lines of a

changed line are not included in any chunk.

“Patches” (or “diffs”) are the output of the diff program. They include all the
chunks of changes between the two files.

Other formats

This only brushes the surface of diff. For one thing, the three lines of
unchanged context is configurable. Instead of using the -u option, you can use
the -U lines option to specify any reasonable number of lines of context. You
can even specify -U 0 if you don't want to use any context at all, though that is
rarely useful.

What does the -u (or -U lines) argument mean? It specifies the unified diff
format, which is the particular format covered here. Other formats include:

• “context diffs” which have the same information as unified diffs, but are
less compact and less readable

• “ed script diffs” or “normal diffs” which are in a format that can be easily
converted into a form that can be used to cause the (nearly obsolete)
editor ed to automatically change another copy of the old file to match the
new file. This format has no context and could easily be replaced by -U 0,
except for compatibility with older software and the POSIX standard.

You will almost never want to create context or normal diffs, but it may be
useful to recognize them from time to time. Context diffs are marked by the
use of the character ! to mark changes, and normal diffs are marked by the use
of the characters < and > to mark changes.

Here are examples:

diff -c 1 2
*** 1 Sat Apr 20 22:11:53 1996
--- 2 Sat Apr 20 22:12:01 1996

*** 1,9 ****
 Ecce Eduardus Ursus scalis nunc tump-tump-tump

 occipite gradus pulsante post Christophorum
 Robinum descendens. Est quod sciat unus et solus
! modus gradibus desendendi, non nunquam autem
 sentit, etiam alterum modum exstare, dummodo
! pulsationibus desinere et de no modo meditari
 possit. Deinde censet alios modos non esse. En,
 nunc ipse in imo est, vobis ostentari paratus.
 Winnie ille Pu.
--- 1,9 ----
 Ecce Eduardus Ursus scalis nunc tump-tump-tump
 occipite gradus pulsante post Christophorum
 Robinum descendens. Est quod sciat unus et solus
! modus gradibus descendendi, nonnunquam autem
 sentit, etiam alterum modum exstare, dummodo
! pulsationibus desinere et de eo modo meditari
 possit. Deinde censet alios modos non esse. En,
 nunc ipse in imo est, vobis ostentari paratus.
 Winnie ille Pu.
diff 1 2
4c4
< modus gradibus desendendi, non nunquam autem

> modus gradibus descendendi, nonnunquam autem
6c6
< pulsationibus desinere et de no modo meditari

< pulsationibus desinere et de eo modo meditari

There are a few other important things to note here:

• In context diffs, the * character is used in place of the unified diff's -
character, and the - character is used in place of the + character. The
context diff format was designed before the unified diff format, but the
unified diff format's choice of characters is mnemonic and therefore
preferable.

• Context diffs repeat all context twice for each chunk. This is a waste of
space in files, but far more importantly, it separates the changes too
widely, making patches less human-readable.

• Normal, old-style diffs are very contracted and use very little space. They
are useful in situations where you don't normally expect a human to read
them, where saving space makes a lot of sense, and where they will never
be applied to files which have changed. For example, RCS (covered in the
May 1996 issue of LJ) uses a format almost identical to old-style diffs to
store changes between versions of files. This saves space and time in a
situation where any context at all would be a waste of space.

Using Patches

When someone changes a file that other people have copies of (source code,
documentation, or just about any other text file), they often send patches
instead of (or in addition to) making the entire new file available. If you have the
old file and the patches, you might wish that you could have a program apply
the patches. You might think that normal diff format, which was made to look
like input to the ed program, would be the best way to accomplish this.

As it turns out, this is not true.

A program called patch has been written which is specifically designed to apply
patches to files (change the files as specified in the patch). It correctly
recognizes all the formats of patches and applies them. With unified and
context diffs, patch can usually apply patches, even if lines have been added or
removed from the file, by looking for unchanged context lines. Only if the
context lines have themselves been changed is patch likely to fail.

To apply patches with patch, you normally have a file containing the patch (we'll
call it patchfile), and then run patch:

patch < patchfile

Patch is very verbose. If it gets confused by anything, it stops and asks you in
English (it was written by a linguist, not a computer scientist) what you want to
do. If you want to learn more about patch, the man page is unusually readable.

Other Related Tools

If you read the RCS article in the May issue (Take Command: Keeping Track of
Change, LJ #25, May 1996), you may have noticed that the article talked a bit
about a program called rcsdiff. rcsdiff is really just a front end to diff. That is, it
looks for arguments that it understands (such as revision numbers and the
filename) and prepares two files representing the two versions of the file you
are examining. It then calls diff with the remaining options. The RCS article used
-u to get the unified format without explaining what it meant, but you can use -
c to get context diffs, or use -U lines to choose the amount of context you get
in a unified diff, or use any other diff options you like.

You may notice that rcsdiff produces more verbose output than normal diff.
From the RCS article:

rcsdiff -u -r1.3 -r1.6 foo
==
RCS file: foo,v
retrieving revision 1.3
retrieving revision 1.6
diff -u -r1.3 -r1.6
--- foo 1996/02/01 00:34:15 1.3
+++ foo 1996/02/01 01:05:28 1.6
 -1,2 +1,6
 This is a test of the emergency
-RCS system. This is only a test.
+RCS version control system.
+This is only a test.
+
+I'm now adding a few lines for
+the next version.

It looks just like a normal unified diff except for the first 5 lines.

This doesn't prevent you from sending patches to people. The patch program is
extremely good about ignoring extraneous information. It can even ignore

news or mail headers, extra comments written in a file outside a patch, and
people's signatures following patches. Patch tells you when it is determining
whether text is part of a patch or not by saying “Hmm...”

If you don't care how two files differ, but just want to know whether they differ,
the cmp program will tell you. It works not only for text files, but also for binary
files. In this example, the files 5 and 6 are different; 2 and 4 are the same:

cmp 5 6
5 6 differ: char 159, line 4
cmp 2 4

Notice that when two files are the same, cmp doesn't say anything at all. It only
tells you explicitly if the files have been changed. For use in writing shell scripts,
cmp also returns true if the files are the same and false if they don't, as shown
by this shell session:

if cmp 5 6 ; then
 echo "same"
else
 echo "different"
fi
5 6 differ: char 159, line 4
different
if cmp 2 4 ; then
 echo "same"
else
 echo "different"
fi
same

There are several other programs with related functionality. In particular, diff3
can be used to merge together two different files that have both been edited
from a common ancestor file. That common ancestor must exist in order for
diff3 to work correctly.

The info pages which are shipped with diff are probably installed on your
system. If you want to learn more about diff, try the command info diff or use
info mode from within emacs or jed.

diff, wdiff, patch, and emacs are available via ftp from the canonical GNU ftp
archive, prep.ai.mit.edu, in the directory /pub/gnu/

Michael K. Johnson His wife Kim likes A. A. Milne and briefly studied Latin
(unlike Michael, whose experience with Latin was limited to singing in choir),
which is why she owns Winnie Ille Pu as well as Tela Charlottae (Charlotte's
Web).

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Auto-loading Kernel Modules

Preston F. Crow

Issue #28, August 1996

Removing code from the kernel that provides unneeded support is one option
long associated with Linux. Now, you can remove code that is not constantly
required, putting it in modules loaded on command.

Like many operating systems, Linux offers support for numerous devices, file
systems, and network protocols. Unfortunately, this growing support increases
the memory requirements of the kernel. Linux partially solves this problem by
allowing selection of only the features you need when compiling the kernel.
This is further improved by allowing some features to be compiled as modules,
so they can be loaded only when they are needed. The loading and unloading
of modules can be automated with the use of kerneld, making the use of
features compiled as modules just as easy as using those included in the basic
kernel.

To use kerneld, you should start by installing the most recent version of the
modules package, found at www.pi.se/blox/modules/. I'm using
modules-1.3.69f, but there's probably a newer version out by the time you read
this article. Also, you'll need a kernel at least as recent as 1.3.57.

Fortunately, kerneld automatically knows about most modules. All you must do
is run it in your startup script. For Slackware-based systems, you'll need to edit /
etc/rc.d/rc.local. You should include the following:

Update kernel-module dependencies file
[-x /sbin/depmod] && {
 /sbin/depmod -a
}
Start kerneld
[-x /sbin/kerneld] && {
 /sbin/kerneld
}

For Red Hat systems, you can install the contributed modules RPM on
ftp.redhat.com in /pub/contrib/RPMS/ called modules-1.3.57-3.i386.rpm which

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.pi.se/blox/modules/

provides support for kerneld. A newer version will probably be released by the
time you read this, so look for a later version of the modules utility if you can't
find it there. Alternately, read the article “Understanding Red Hat Runlevels” in
LJ issue 27 (July 1996) and create a kerneld boot script in /etc/init.d with
appropriate links in /etc/rc2.d, /etc/rc3.d, /etc/rc4.d, and /etc/rc5.d.

In either case, this runs depmod, which updates dependency information used
by kerneld and then starts kerneld, which forks and hides in the background
until the kernel needs it.

Now, all you need to do is reconfigure your kernel to use modules for the
features you're not always using, and build and install the kernel and the
modules. If you've never built modules before, simply add two steps to the
kernel compilation process: make modules and make modules_install.

When you boot the new kernel, you should have all your modules loading
automatically whenever you try to use them. The command lsmod will tell you
which modules are loaded. Of course, it is a good idea to keep your old kernel
bootable in case something doesn't work as expected.

Unfortunately, kerneld doesn't know about every module you might want to
install—particularly those not part of the kernel distribution. To install these
modules, you'll need to tell kerneld about them in /etc/conf.modules. Kerneld
needs to know both where to find the module and what event triggers loading
it.

I strongly recommend you use the default directories for your modules.
Otherwise, you'll have to add not only the new path to /etc/conf.modules, but
all the default paths as well. To see the default paths, use modprobe -c | more.

Telling kerneld what triggers the loading of a module requires adding alias

entries in /etc/conf.modules. For device drivers, such as zftape.o or joystick.o,
the format is based on the device type (character or block) and major number.
For example, I use alias char-major-15 joystick for the joystick driver. You can
get a bunch of examples by running modprobe -c to see the defaults. You can
have multiple entries for the same module if there are multiple events that
should trigger loading it.

You may also need to set an alias if you want to load an optional module, like
BSD compression with PPP. The simplest alias to use for BSD compression is
alias ppp bsd_comp. This will tell kerneld to load bsd_comp instead of ppp, but
since bsd_comp requires the real ppp module (which requires slhc), it will load
slhc and ppp first. Of course, if you have trouble with this, you can always load

the modules explicitly in your dialing script and unload them in /etc/ppp/ip-
down.

You can also use kerneld to set up a dial-on-demand network connection.
When the kernel receives a request to send a packet to an IP address for which
there is no routing information, it asks kerneld if it can establish a route to that
address. When kerneld receives such a request, it runs /sbin/request-route,
which should, generally, be a script to start PPP or SLIP, thereby establishing a
route.

So, all you have to do is replace /sbin/request-route with your dialing script.
Well... not exactly. If you rely completely on an outside nameserver, you can
probably get away with that. In general, however, you need to be careful, as
kerneld may call request-route several times, once for each IP address the
kernel needs to resolve. This can be solved by using a lock file for the modem
device, which is an option for chat and pppd. [You should be using that option
anyway! —ED]

What Should Be Compiled as a Module?

When configuring your system, at first you may think it would be best to
compile everything as a module. This isn't always a good idea, as it won't always
save memory. Each module uses memory in 4K pages, so the last page will
generally have some space wasted. Therefore, if you'll almost always have the
module in use, you might as well compile it into the kernel. Also, keep in mind
that kerneld itself consumes some memory (in my experience, at least 12
pages), so if you only have a few small modules to worry about, it would be
better to compile them into the kernel or load them explicitly in the startup
script.

Modules for file systems must be loaded as long as the file system is mounted,
even if you're not using it. So if you keep /dos mounted all the time, don't
bother to compile support for FAT as a module. If you don't like that option, you
could look into using an automount daemon instead of keeping the file system
mounted.

Be careful with modules that include information that may be changed when
run. For example, the sound driver keeps track of the volume, and if you
compile it as a module, the volume will be reset to the default each time it is
loaded.

Finally, be careful not to compile something as a module if it will be used at
boot time before kerneld is started. This includes the root file system, of
course. For many systems, you'll find that you need both ELF and a.out support
before kerneld starts. You may be able to overcome some problems by

installing kerneld as one of the first programs executed by the startup scripts,
but be careful if you're also doing dial-on-demand, as you may have something
like sendmail in your startup scripts that will trigger it. As long as you have your
old kernel around as a safety net, though, feel free to experiment.

Preston Crow Preston Crow is a graduate student in computer science at
Dartmouth College. He became a happy Linux user in the summer of 1995,
shortly before becoming happily married.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Cold, Thin Edge

Todd Graham Lewis

Issue #28, August 1996

Open up your Unix toolbox and you will see a complete set of tools ready to be
used. The ability to differentiate separate, simultaneous processes and direct
their input and output at your discretion and the will to use this ability,
constitute the shell paradigm.

The Shell Paradigm is described (by me at least) as taking some of a true
operating system's most beautiful characteristics and bending, twisting, folding,
spindling, and mutilating them into obscenely obtuse and imperfect tools. That
these characteristics can be bent, twisted, etc., and still work is, of course, what
gives them their beauty.

Open up your Unix toolbox (/usr/bin for you gnubies), and you will see a
complete set of tools, ready for use. Much as the discovery of a basic
technology distinguishes one epoch of human history from another, redirection
and job control under Unix create a golden age of computing in contrast to the
iron-age toils of MS-DOS. Because of the simple ability to differentiate separate,
simultaneous processes and direct their input and output at your discretion,
there are few limits to the ways in which you can use these tools to assemble
simple Unix processes. This ability, and the will to use it, constitute the shell
paradigm.

But where power resides lies danger. How much | & and popen() can a single
process take before it disintegrates into a heap of intractable spaghetti code?
How many different programming contexts can we use before our simple
program hurtles out of control towards the nether-regions of “Kernel Panic: Out
of memory”? [A lot—ED]

This article will describe to you how to mix and match I/O streams to and from
executables in different environments. If you are hacking a Perl script and want
to throw a little grep in for good measure, go right ahead; it's possible. Finally,
we will discuss the limits to and wisdom of these techniques.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Shell

The capability to have processes communicate easily among themselves is
inherent in the design of Unix systems, so the appellation “shell paradigm” is
somewhat of a misnomer. Nonetheless, the shell is the context in which most
people are familiar with I/O redirections, so we will start there. As we will later
see, all these facilities can be easily recreated in places other than at the shell
prompt.

There are several ways to use process redirection within the shell. You can take
the output of a process and direct it to a file, for example:

cd ~; ls > /tmp/ls.file

Alternatively, you can append output to existing files:

cd ~/bin; ls >> /tmp/ls.file

You can also take the output of a process and redirect it as the input of another
process:

cd ~; ls | grep lj.article

Within most shells, including the Bourne-compatible bash and zsh, you can
integrate the output of your command within other commands. For example, if
you wanted to generate a file with yesterday's time appended to the end, you
could do the following:

touch /usr/acct/atlanta/data.`
 date --date '1 day ago' +"%Y%m%d"
 `

which just generated a file named data.19960503 for me. What you get
depends on how quickly you read your Linux Journal. It also depends on which
free OS you are running; FreeBSD's version of date does not offer the 1 day ago

facility, so you will have to get and compile gnu-date if you are silly enough not
to run Linux (or if your employer uses FreeBSD.)

C

External-command inclusion is nice in C when you need a function already
implemented as a Unix tool which you don't want to recode. For example, if you
need to sort a stream of data or compress an output file, using sort or gzip

rather than coding it natively is an efficient way to accomplish the task. There
are two ways to use external programs under C: system() and popen().

If you have a large amount of data in strings that you want to sort using the
sort program, you can use popen() to call the sort program, sort the data and
read the result back from the program. If you just want to compress a file, you
can use the simpler system() function. Neither function is unfamiliar to a C
programmer, but if either is unfamiliar to you, Look in the Linux man pages,
where they are documented. If you want more explanation, you can read
Advanced Programming in the Unix Environment, by W. Richard Stevens.

However, if you need to interact with the program you call, it is possible to do
this with a C library that comes with a tool called “Expect”, which is described
later in the Tcl section.

Mother of Perl

Whereas there are a number of different ways to manipulate process I/O within
the shell, there is really only one within Perl: as a filehandle. This is actually a
testimony to the beauty of Perl's design; kudos to Larry Wall for making it so
simple.

You can include other processes from within Perl in several different manners,
all with the open () command. For example, if you wanted to open a process
bottle to which the output of your Perl script should be sent, you would use

open (BOTTLE, "| ~<bin/bottle"

to direct the output. Similarly, if you wanted to read the input of bottle, you
would do much the same thing, adding the pipe symbol (|) at the end:

open (BOTTLE, "~<bin/bottle |")

In the first case, you could only write to filehandle bottle, whereas in the second
case, you could do nothing but read.

Commands opened in this manner can also get fancy. Everything within the
quotation marks is executed from within a subshell, so commands like either of
the following will work:

open (BOTTLE, "cd ~; /bin/bottle |")

open (FIND, "cd /home/tlewis; find . -name $string -print |")

At this point many people ask, “What if I want to do both reading and writing?”
You can't do this with the open () command, so Perl is broken, right? No, not
really. The fact that you can't easily open a two-way pipe is a design decision. As
explained in the Unix FAQ:

The problem with trying to pipe both input and output to an arbitrary slave
process is that deadlock can occur, if both processes are waiting for not-yet-
generated input at the same time.

Again, it is possible to do this with Expect, as we'll see later.

A short example:

#!/usr/bin/Perl
open (ACCT, "(cd /usr/acct/;".
 "for i in `ls | grep -v admin`; do; ".
 "cat $i/date.19960503; done) | sort |");
while (<ACCT>) {
 chop;
 ($A,$B,$C) = split;
 print "$C $A $B\n";
}

This would take the data in a limited subset of the /usr/acct/ directory, sort it
based on the first entry in each line of each file, reformat the data and print it
to standard output. By mixing Perl and shell tools, this job becomes a lot easier.

Tcl/Tk

Tcl is a simple scripting language designed as a command language which
could easily be applied to various C programs for smooth configuration and
user interaction. Tk is a language which grew out of Tcl in which graphical user
interfaces can be constructed. One usually refers to them together as Tcl/Tk.

Tk has gained much popularity recently as an extremely easy way to construct
graphical interfaces under X-Windows. If you have used make xconfig when
compiling any of the recent (since 1.3.60) development kernels, you have used
Tk. The program Tkined, a network management tool for Linux, uses Tk; it is
based on Scotty, a Tcl extension offering various network functions such as
access to SNMP data.

In accordance with its original design goals, Tcl allows you to interact with
external processes in a fairly intuitive manner. Simple commands may be
executed under Tcl with a simple exec command. For example:

exec ls | grep -v admin

returns exactly the same result as it did in the previous Perl example, but prints
it to standard output, much like the system() command in C.

If you wish to interact with the output of a process or direct information to its
input, you need to associate it with a filehandle, much as in Perl. This is done
via the open command, as in:

set g0 [open |sort r+]

This opens the command sort for input. You would send data to the handle g0

elsewhere in the program using puts and then read from the output using gets.
The r+ switch means that you can both write data to the process (data to be
sorted) and read data from the process (sorted data). If you just wanted the
data to be sent to standard output, you would use:

set g0 [open |sort w]

giving you write access to the process.

Wait, you say, this means that I can both read and write from a process? Yes, it
does. Doesn't the Unix FAQ say this is a bad thing? Yes, it does. If you use this
functionality to construct webs of interlocking, self-feeding processes, then you
are really asking for trouble. Keep it simple if you are going to do this at all.

Expect

While it is potentially dangerous, people went so wild over this feature of Tcl
that an extension to Tcl called Expect, a programming environment in its own
right, was invented and has soared to new heights of popularity among certain
users.

For example, ftp is a fairly simple program. You interact via a command line
with a local program which then executes your commands. Because this uses
the simple Unix STDIN/STDOUT method of interaction, you can write shell
scripts to ftp files; I use such a script to retreive RFCs from the Internet
automatically. However, a program like telnet is virtually impossible to script
because you are not sending data to the program itself—you are sending data
through a network connection to be interpreted on a remote machine. So, if
you need to maintain a large number of routers, and if the only way to
configure or check on these routers is via telnet, you are in trouble.

Expect solves this problem by using Unix's pseudo-tty mechanism. With Expect,
you can script dialogues between your program and another one in which your
program responds intelligently to the other. Think of a dialer program like dip
or chat, except you can script dialogues with other programs instead of
modems.

Expect is the height of inter-program communication, short of socket-based or
sysV-ipc. (If you don't know, don't ask.) While it originally started as a Tcl
extension, it has also been rendered into a C library; you can access its features
from within C programs or from other environments which can use C libs, such
as Perl.

Smooth Sailing, But Rocks Ahead

In the introduction to his book Tcl and the Tk Toolkit, John Ousterhout
mentions that even though Tcl was originally designed to be a simple scripting
language where all programs would have at least “some new C code”, the
simplicity of the environment which they gave the programmer proved too
enticing. “Most Tcl/Tk users never write any C code at all,” Ousterhout writes,
“and most Tcl/Tk applications consist solely of Tcl scripts.”

This is either a good or a bad thing, depending on whether your criteria are
ease-of-use or efficiency/power. Responding to the rise of Tcl in his typically
understated manner, GNU Luminary and urban legend Richard Stallman
posted a USENET article entitled “Why you should not use Tcl”:,

Tcl was not designed to be a serious programming language. It was designed to
be a “scripting language”, on the assumption that a “scripting language” need
not try to be a real programming language. So Tcl doesn't have the capabilities
of one.

The ability to interact with other programs in new, unorthodox and some would
say dangerous ways is what makes Tcl so appealing to some and so appalling to
others. This is typical of the dilemma in using Unix tools from within non-shell
programs.

Conclusion

It usually comes down to a matter of time. If you're trying to enter your code in
the country fair, these techniques aren't going to win you a blue ribbon. If,
however, you want to get it done by 7 PM so you can go to the fair, these might
do the trick.

In an age of near-gigaflops-speed chips in home computers, a few wasted
cycles here and there aren't going to kill anyone, especially for a program that
will be run once or twice and then thrown away. Extending the shell philosophy
to development work is also an attractive option—the speed with which you
can hack together workable programs makes these techniques alluring to
programmers on a tight deadline. Tcl/Tk is a perfect example of extending the
shell philosophy to speed up development cycles. Of course, the inefficiencies
of this approach are the cause of nearly all of the intense debate over the
merits of Tcl/Tk.

Whether it be Tcl, shell, Perl, or C, no matter what your programming technique
of choice might be, there is usually an option whereby tools from other
programming environments can be imported for your use. If Richard Stallman

writes you a nasty letter criticizing you for it, though, don't say you weren't
warned.

Todd Graham Lewis (tlewis@mindspring.com) has moved on to bigger and
much better things with Mindspring Enterprises, the largest Internet Service
Provider in the Southeastern US. There, he is learning a lot from his fellow
engineers who have fancy “Computer Science” degrees. He wonders why
everyone doesn't learn computing the same way he did—by playing with his
Linux box.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:tlewis@mindspring.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Basic FVWM Configuration

John M. Fisk

Issue #28, August 1996

If you've recently set up fvwm and are using the default system.fvwmrc, you'll
find that clicking the left mouse button anywhere in the root window brings up
a pop-up menu. Not all of those entries will be valid for your system. Here's
how to change them.

If you've recently set up fvwm and are using the default system.fvwmrc, you'll
find that clicking the left mouse button anywhere in the root window brings up
a pop-up menu. What you may also quickly discover, to your dismay, is that
many of these program items don't do anything, either because the program
doesn't exist or is incorrectly set up.

Because of this, you'll probably want to remove these menu entries. Also,
sooner or later, you'll install programs that you'd like to add to the pop-up
menu. Or you may decide that you want to reorganize the menu into
categories, such as Editors, Graphics, Viewers, Network Apps, and so forth.
Whatever the reason, configuring the pop-up menus is easy and a huge
amount of fun. So let's look at how it's done.

Suppose you do a lot of text-editing or programming and have several editors
you enjoy using. You now want to organize the pop-up menu by program
category and want to put all your favorite editors under one pop-up sub-menu,
called Editors.

For the sake of simplicity, we'll leave out a discussion of using command line
options for things such as geometry, foreground and background colors, fonts,
and so forth. We'll use fairly simple examples and assume that you can go back
later and customize the command line options.

Be sure you've made a backup copy of your current working version of
.fvwmrc. After that, load up your favorite editor and open the file used to define
the pop-up menus, .fvwmrc. This will include entries such as:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Popup "Applications"
 Title "Applications"
 Exec "Wingz" exec Wingz &
 Exec "Xmgr Plot" exec xmgr -g 780x730+362+3 &
 Exec "Ghostview" exec ghostview &
 Exec "Seyon" exec seyon -modem /dev/modem &
 Exec "SciLab" exec scilab &
 Exec "X3270" exec x3270 &
 Exec "Xfilemanager" exec xfilemanager &
 Exec "Xfm" exec xfm &
 Exec "Xgrab" exec xgrab &
 Exec "Xxgdb" exec xxgdb &
EndPopup

Your .fvwmrc will probably look a bit different than this, so find the section of
the file that defines Popup "name" ... EndPopup stanzas. Without fully
understanding how things work, you could probably use an entry such as the
above as a template and modify the entries to include the programs you want.
What you'll discover, however, is that this isn't hard to understand.

An important point to keep in mind is that you must define sub-menus first,
before you define the main menu. The reason for this is actually quite simple:
when fvwm starts it reads the .fvwmrc configuration file from beginning to end.
If you define the main menu first, it encounters references to menu items (your
sub-menus) that haven't been defined yet, and so it is unable to correctly set up
the menus. Also, sub-menus can be nested to any depth. Once you have a list
of editors to add to a sub-menu, and you've worked out the command line
options you intend to use, you're ready to start.

The basic entry for a menu takes the form:

Popup "name"
 Title "title"
 Exec "program" exec command &
 Exec "program" exec command &
 Exec "program" exec command &
 Nop ""
 Exec "program" exec command &
 Exec "program" exec command &
EndPopup

Let's briefly look at each part of the entry. The entry begins with the word
Popup and a "name" which is used to refer to this menu itself (we'll see how
this is used in a minute when we talk about adding a sub-menu to the main
menu). The next line, beginning with the word Title, specifies the title that
appears at the top of the menu. Notice that the title is enclosed in double
quotes. Next are a series of familiar Exec stanzas, each of which is used to
launch a program. This time, however, the word following Exec and enclosed in
double quotes is the name that will appear on the menu. A stanza for the xedit
editor might look something like:

 Exec "XEdit" exec xedit -font 9x15 -g +5+20 &

The menu would then include an entry with the name XEdit: clicking on this
would launch the xedit program with the font and geometry options that are
specified on the command line. Don't forget the ampersand (&) at the end of
the entry.

You'll also notice a line which begins with the word Nop, which, as its name
suggests (to some people, anyway), performs “no operation”. It does, however,
allow you to create separator lines between menu items. Nop followed by a
pair of double quotes with no spaces between them ("") creates a separator
line. This is very useful for visually separating a list of items in the menu.
However, if Nop is followed by double quotes with a space between them (" "),
an empty entry is created between menu items instead of a line. Try both and
see the difference.

Finally, the reserved word EndPopup is used to indicate that the menu has
been defined. Pretty simple, eh? Once you understand how menus are defined,
you can easily use an existing menu definition as a “template” for creating one
of your own.

One more quick point to mention: it is possible to launch fvwm modules from a
pop-up menu. As with the InitFunction entries mentioned last month, these are
really quite simple and use the same form:

Module "name" module

For example, to start up the FvwmPager, you would add something like the
following:

Module "Pager" FvwmPager

Notice two things: the menu item name for the module can be anything you
want—it doesn't have to be the same as the module name. Second, you do not
put an ampersand (&) at the end of the command line.

Putting It All Together

So, now that we've touched on the basics, let's put all of this together and
create a sub-menu for our editors. Supposing that we wanted the menu title to
be Editors and the Popup itself to be referred to as editors, then we could
create something similar to the example given below:

Popup "editors"
 Title "Editors"
 Exec "XE&dit" exec xedit &
 Exec "X&Coral" exec xcoral &
 Exec "GNU &Emacs" exec emacs -g 84x47 &
 Exec "&XEmacs" exec xemacs &
 Exec "XW&PE" exec xwpe -font 9x15 &
 Exec "X&WE" exec xwe -font 9x15 &

 Exec "&aXe" exec axe -noserver &
 Exec "&NEdit" exec nedit &
 Exec "E&Z Editor" exec ez &
EndPopup

So far so good, eh. What's that? What are those ampersands doing in the menu
item name entry? Fvwm allows you to define keyboard shortcuts to use with
menus. Placing an ampersand in an item name causes the letter following the
ampersand to be underlined. Then, when the menu is displayed, hitting that
underlined letter causes the program item to be executed.

In the menu defined above, the letter “d” in XEdit would be underlined and
would appear as “XEdit”. Once the menu has been displayed, hitting a “d”
launches xedit. It goes without saying that you should avoid defining the same
hot-key for two items in the name menu.

Ok, we're almost done. Now that we've created a sub-menu, let's add this to the
main menu. An entry for a sub-menu takes the form:

 Popup "Editors" editors

Pretty easy, huh? The syntax should start to look pretty familiar to you by now.
The line begins with the word “Popup” indicating the the item is a sub-menu of
some kind. Following this, and enclosed in double quotes, is the item name that
will appear on the menu. Finally, the last argument is the name of the pop-up
menu itself. Remember that we decided to call the pop-up editors? This is the
name by which the sub-menu is called. Be careful not to mix up the name of
the pop-up menu with the title (e.g., “Editors”) that the menu uses.

Well, congratulations! You should now be well on your way to customizing and
configuring. There are many more things that can be included on a pop-up
menu although programs, modules, and sub-menus are probably the the ones
you'll use the most. Once you get comfortable creating menu entries, skim over
the fvwm manual page and take a look at the sample fvwmrc file that comes
with the fvwm distribution to get ideas about what else can be done.

As a final word of exhortation let me suggest that “moderation in all things” is
probably sage advice. It is unnecessary and unwise to create an entry for every
program on your system. Add programs that you frequently use and make
them accessible. Nesting sub-menus beyond one or two deep is likely to make
getting at them more of a chore than it is worth. Also, more than 15 to 20 items
on a single menu will probably make it a bit unwieldy. [Actually, experts in
human-computer interaction suggest that the human mind is less efficient
when dealing with more than 7 items (or groups of items) together. —ED] Use
your discretion and divide things up if you need to. Most of all, though, have
fun!

Color Customization

By now you should start feeling pretty good about fvwm. You've learned the
basics of creating a start up desktop and you've re-organized and customized
your pop-up menus. This is pretty good, eh? One of the next items on the
customization to-do list is invariably colors. Like most everything associated
with fvwm, colors are extensively customizable. Doing this, however, can be just
a bit tricky, not because it's all that difficult, but because several entries govern
how colors are applied to various programs and windows. Once you track all of
these down, and understand a few simple concepts about how colors are
defined, the rest is play. At the outset, however, it is helpful to know something
about how fvwm views windows (no, not that Windows...).

Fvwm recognizes and makes a distinction between a couple of different “types”
of windows. These include the “selected” window—that which has the input
focus—“unselected” windows—those which do not have the input focus—and
“sticky” windows—those which “stick to the glass” as it were. It is possible to
customize the color scheme for each type of window. Parenthetically, let me
also point out that it is easy to change the color of the root window or to use a
bitmap or pixmap image in the root window as the “wallpaper”. In Part 1 of this
series we saw that the xsetroot program allows you to change the color of the
root window (see the sample .xinitrc file). There are much more fun and
entertaining ways to change the root window, but I'll leave that up to you for
the moment (hint: man xpmroot and man xv should give you some ideas...).

So, back to customizing the various windows. Fvwm allows you to individually
customize selected, unselected, and sticky windows as well as menus and the
pager. These are set using the following reserved words:

StdForeColor
StdBackColor
StickyForeColor
StickyBackColor
HiForeColor
HiBackColor
MenuForeColor
MenuBackColor
MenuStippleColor
PagerForeColor
PagerBackColor

ForeColor stands for the foreground color and BackColor stands for the
background color. This is quite typical of how colors are designated under X—
using a foreground/background combination to set the color scheme. A brief
explanation of each of these is as follows:

StdForeColor foreground color for menus and non-selected window titles

StdBackColor background color for menus and non-selected window frames

StickyForeColor foreground color for non-selected sticky window titles

StickyBackColor background color for non-selected sticky window frames

HiForeColor foreground color for selected window's title

HiBackColor background color for selected window frame

MenuForeColor foreground color for menus

MenuBackColor background color for menus

MenuStippleColor color for shaded-out entries in a menu

PagerForeColor foreground color for pager

PagerBackColor background color for pager

Setting up the color scheme you want is a matter of adding an entry such as:

StdForeColor black
StdBackColor wheat

This would set the foreground (text) color to black and the background color to
wheat.

Armed with this new knowledge, you head off to customize colors, and find an
entry that looks like:

StdBackColor #8a4510

If you're having a little trouble closing your eyes and visualizing just what the
color #8a4510 might look like... ...keep reading.

Xcolorsel to the Rescue!

The color designated by the entry #8a4510 (which, for the curious, happens to
be SaddleBrown) is in hexadecimal notation. As of X11 Release 5, there are
several means for specifying color: two commonly used formats are RGB color
names (such as SaddleBrown) and RGB hexadecimal values (such as #8a4510).
The acronym RGB stands for “Red, Green, Blue” and has to do with how colors
are generated.

Recall from your school days that all colors can be produced by a combination
of primary colors—cyan, magenta, and yellow. Technically speaking, these are
the “subtractive” primary colors of paint; when you put them all together, they

subtract all the light and make “black” (it really turns out brown). It is also
possible to create colors using a combination of red, green, and blue “additive”
primary colors of light—when you put them all together, they add up to make
white. Hence, the RGB designation indicates the amount each of red, green,
and blue light which make up a color. To see what colors are available to you
under X, you can view the file /usr/lib/X11/rgb.txt. This file contains a listing of
all of the named colors on your system. This might contain a listing such as:

...
139 69 19 saddle brown
139 69 19 SaddleBrown
160 82 45 sienna
205 133 63 peru
222 184 135 burlywood
245 245 220 beige
245 222 179 wheat
...

Each line contains the color name and three columns of numbers which
represent the relative contribution of red, green, and blue values based on a
scale from 0-255—the range of numbers that can be stored in 8 bits, or one
byte. Pretty clever, eh? For reference sake, white contains the maximum value
of red, green, and blue and has a value of 255, 255, 255. Black is defined as 0, 0,
0. This still doesn't answer the question of what #8a4510 looks like, until you
know a bit about hexadecimal.

The hexadecimal system uses a base 16 place order system with “digits”
including the numbers 0-9 and the letters a-f (representing decimal values
10-16). Knowing that an RGB designation must have an entry for each of the
base colors, you can quickly surmise that by breaking 8a4510 into three
hexadecimal numbers and converting them to decimal, that you could find
their value in the rgb.txt file above (which uses decimal values for the red,
green, and blue values). Converting from hex to decimal by hand isn't very
difficult, but here's an even easier way to do it:

Enter bc at the command line to start the bc online calculator, and enter:

ibase=16

This sets the input to base 16 (hexadecimal). Now, enter the numbers that you
want to convert to decimal separated by a semicolon:

8A;45;10

You must use capital letters for hexadecimal input. The output should look
something like:

138
69
16

Do ctrl-D or type quit to exit bc.

Thus, the red value is 138, green is 69, and blue is 16. Going back to the sample
rgb.txt entry above, we can see that this is very close to the entry for
SaddleBrown (the blue value in rgb.txt is 19 instead of 16) and this is, in fact,
what our color turns out to be.

Now, if all of this seems needlessly complex, rest assured that there are easier
ways of viewing and handling colors under X. There are a few must-have
configuration utilities that make using and customizing X-Windows a lot easier,
and a color viewer such as xcolorsel is one of these. You should be able to find
a copy of this very useful program at sunsite.unc.edu (or preferably one of the
mirror sites) in the /pub/Linux/X11/xutils/colors/ directory. This very handy
program:

1. Shows a color patch and the rgb.txt entry for each color.

2. Displays the color entry in any of 16 different formats, including the
hexadecimal notation we've just looked at.

3. Lets the user “grab” a color off the desktop and displays the rgb entry that
most closely matches it.

4. Lets the user “preview” what a certain foreground/background color
combination might look like using its Set foreground and Set background

features.

When you start up xcolorsel, you are initially presented with a display window
containing color patches, their corresponding rgb values in decimal notation,
and the color name—just as they appear in the rgb.txt file. Clicking on the
Display format button presents you with a menu of different formats—
choosing 8 bit truncated rgb from this menu lets you view SaddleBrown with its
rgb hex value of #8a4510! So, now you can easily see what each color name
looks like and, if you're curious, what the hexadecimal notation would be. Thus,
the following entries are equivalent:

StdForeColor SaddleBrown
StdForeColor saddle brown
StdForeColor #8a4510

Keep in mind that hexadecimal notation requires the pound, or hash sign (#)
prefix.

Use the Grab color feature to quickly find out what a color's rgb entry is. To do
this click on the Grab color button—the cursor will change to a small
magnifying glass. Then, position the cursor over any color on your desktop and

click once; xcolorsel will display along the bottom status line how many
matches or near-matches there are and will highlight the closest entry in the
color display window.

Finally, if you want to see what a particular foreground/background color
combination might look like, try this: using the mouse pointer, highlight a color
you want to use as either the foreground or background color and then hit
either the Set foreground or Set background buttons at the bottom. The
foreground or background colors of the color display window will then be
changed to this value. Hitting the Default colors button reverts the window to
its original color scheme.

Now that you've got a bit of a feel for how colors are defined, you can easily
create your own customized “window treatments”. However, if you've made
changes, started up fvwm, and things still aren't quite the way you'd expected,
there still a couple more things you need to know about...

A Word about Styles

One powerful feature of fvwm is that it allows the user to define Styles for any
or all applications. The idea is actually a fairly simple one: you can designate
how an application window appears and several of its behaviors by setting up a
style for it. This can include such things as whether it has a title bar, the size of
the window border, whether it has resize handles, what icon it is associated
with, and so forth. One such style option, as you might imagine, is color.

The syntax for a Style entry is actually quite simple and might look like:

Style "xterm" Title, Handles, HandleWidth 7, Icon rxterm.xpm

That is, it begins with the word Style and is followed by the name of the
program enclosed in double quotes—in this example, the xterm program. What
follows is a comma-separated list of the various style options that you may wish
to apply to the program.

Let's suppose you wanted to change the color of an application window to a
simple black text on gray background. Simple enough, although it's important
to make two points: first, the Styles color entry only sets the colors of the
decorative window frames that fvwm puts around the program window—it
doesn't change the colors of the application itself. Second, the colors are used
when the window is non-selected (that is, it doesn't have the input focus). When
the window is selected, the HiForeColor / HiBackColor combination set the
color scheme. That said, to change the color scheme when the application
window is non-selected you could add an entry such as:

Style "xterm" Color black/gray, Title, Handles, Icon rxterm.xpm

The syntax is simply the reserved word Color followed by the foreground color
name or hex number, a forward slash, and the background color name or hex
number. You could also designate each color using the reserved words
ForeColor and BackColor:

Style "xterm" ForeColor black, BackColor gray, Icon rxterm.xpm

Either method will work.

One more quick point about modules and we're done! As previously
mentioned, fvwm allows additional functionality to be added using modules
such as FvwmPager or the GoodStuff modules. The foreground and
background colors of the modules themselves (and not just the decorative
window frames as we've been discussing up until this point) can be set using an
entry such as:

*GoodStuffFore black
*GoodStuffBack turquoise

Configuration lines for modules must begin with the asterisk (*) character, as
seen in the example above. To specify the foreground color the module name
is given with the Fore suffix. The background color designation uses the Back

suffix. In the example above you can see we've changed the color combination
to black text on a turquoise background. Again, you can use either the color
name or the hexadecimal notation for specifying the color to use.

Well, that should get you going! Obviously, there is a lot more to color
customization than the brief overview presented here. For the curious and
adventurous, let me refer you to the manual pages for X and fvwm, and the
excellent book X-Windows System Administrator's Guide (volume 8 in the X-
Windows series) by O'Reilly & Associates publishing. Chapter 6 of this fine
reference has a fuller discussion of color and the X-Windows system, including
the X-Windows Color Management System (Xcms) that was implemented
beginning with release 5. Enjoy!

John Fisk (fiskjm@ctrvax.vanderbilt.edu) After three years as a General Surgery
resident and Research Fellow at the Vanderbilt University Medical Center, he
decided to “hang up the stethoscope” and pursue a career in Medical
Information Management. He's currently a full time student at the Middle
Tennessee State University and hopes to complete a graduate degree in
Computer Science before entering a Medical Informatics Fellowship. In his
dwindling free time he and his wife Faith enjoy hiking and camping in
Tennessee's beautiful Great Smoky Mountains. An avid Linux fan since his first
Slackware 2.0.0 installation a year and a half ago.

mailto:fiskjm@ctrvax.vanderbilt.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Mobile-IP: Transparent Host Migration on the Internet

Benjamin Lancki

Abhijit Dixit

Vipul Gupta

Issue #28, August 1996

The proliferation of powerful notebook computers and wireless communication
promises to provide users with network access at any time and in any location.

Recent advances in hardware and communication technologies have
introduced the era of mobile computing. The proliferation of powerful
notebook computers and wireless communication promises to provide users
with network access at any time and in any location. This continuous
connectivity will allow users to be quickly notified of changing events and
provide them with the resources necessary to respond to them even when in
transit.

Unfortunately, present day Internetworking protocols like TCP/IP, IPX, and
Appletalk behave awkwardly when dealing with host migration between
networks.[footnote:In the Internet jargon, computers are often referred to as
hosts.] Current versions of the Internet Protocol (IP) implicitly assume the point
at which a computer attaches to the Internet is fixed, and its IP address
identifies the network to which it is attached. Datagrams are sent to a
computer based on the location information contained in its IP address.

If a mobile computer, or mobile host, moves to a new network while keeping its
IP address unchanged, its address will not reflect the new point of attachment.
Consequently, existing routing protocols will be unable to route datagrams to it
correctly. In this situation, the mobile host must be reconfigured with a
different IP address representative of its new location.

Not only is this process cumbersome for ordinary users, but it also presents the
problem of informing potential correspondents of the new address.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Furthermore, changing the IP address will cause already-established transport
layer connections (for example, ftp or telnet sessions) to be lost. Put simply,
under the current Internet Protocol, if the mobile host moves without changing
its address, it will lose routing; but if it does change its address, it will lose
connections.

Mobile-IP is an enhancement to IP which allows a computer to roam freely on
the Internet while still maintaining the same IP address. The Internet
Engineering Task Force (IETF) is currently developing a Mobile-IP standard
which, at the time of this writing, is in its sixteenth revision. The Mobile-IP
architecture, as proposed by the IETF, defines special entities called the Home

Agent (HA) and Foreign Agent (FA) which cooperate to allow a Mobile Host (MH)
to move without changing its IP address. The term mobility agent is used to
refer to a computer acting as either a Home Agent, Foreign Agent, or both. A
network is described as having mobility support if it is equipped with a mobility
agent.

Each Mobile Host is associated with a unique home network as indicated by its
permanent IP address. Normal IP routing always delivers packets meant for the
MH to this network. When an MH is away, a specially designated computer on
this network—its Home Agent—is responsible for intercepting and forwarding
its packets.

The MH uses a special registration protocol to keep its HA informed of its
current location. Whenever an MH moves from its home network to a foreign
network or from one foreign network to another, it chooses a Foreign Agent on
the new network and uses it to forward a registration message to its HA.

After a successful registration, packets arriving for the MH on its home network
are encapsulated by its HA and sent to its FA. Encapsulation refers to the
process of enclosing the original datagram as data inside another datagram
with a new IP header. This is similar to the post office affixing a new address
label over an older label when forwarding mail for a recipient who has moved.
The source and destination address fields in the outer header correspond to
the HA and FA, respectively. This mechanism is also called tunneling, since
intermediate routers remain oblivious of the original inner-IP header. In the
absence of this encapsulation, intermediate routers will simply return packets
to the home network. On receiving the encapsulated datagram, the FA strips off
the outer header and delivers the newly exposed datagram to the appropriate
visiting MH on its local network.

Host movements typically cause some datagrams to be lost while routing tables
at the HA and FA re-adjust to reflect the move. However, by using
retransmissions and acknowledgments, connections maintained by the

transport layer protocol are able to survive these losses in the same way they
survive losses due to congestion. Note that even when the MH is away,
datagrams meant for it are always sent first to its home network, in many cases
resulting in a non-optimal route.

Figures 1 and 2 show a mobility-supporting internetwork which serves as an
illustrative example. It shows two mobility- supporting networks, Network A

and Network B, which are equipped with mobility agents MA1 and MA2,
respectively. A mobile host, MH1, is also shown, whose home network is
Network A. Whenever MH1 is away, MA1 acts as its home agent. When MH1

visits Network B, MA2 acts as its foreign agent.

It is worth pointing out that changes introduced by Mobile-IP are independent
of the communication medium in use. Even though this figure shows mobility
support in a wired internetwork, the Mobile-IP works just as effectively in a
wireless environment.

Figure 3 further illustrates the main idea behind Mobile-IP. It shows an IP
datagram as it flows from computer A (IP address 18.23.0.15) to the mobile
host (IP address 128.226.3.30). In this figure, the mobile host is shown to be
away from its home network. Hosts MA1 (IP address 128.226.3.28) and MA2 (IP
address 128.6.5.1) are acting as its home agent and foreign agent, respectively.

The IP header in the datagram, as it leaves A, indicates 128.226.3.30 as the
destination. In Figure 3, this header is shown as the black portion of the
datagram. Therefore, this datagram is routed to Network A (steps 1 and 2).
Here, the home agent picks up the datagram and inserts an additional IP
header before re-injecting it into the network (steps 3 and 4). The new IP
header carries 128.6.5.1 as its destination address. This header is shown with
cross hatched lines in Figure 3. As this is the header seen by intermediate
routers like R1, the datagram is correctly routed to the foreign agent (step 5). By
this time, the registration process has already informed the foreign agent of the
mobile host's presence on the local net. When the encapsulated datagram
arrives at MA2, the outer header is stripped. The newly exposed header reveals
the MH as the destination and the datagram is forwarded appropriately (step
6).

The IETF Mobile-IP draft also allows a Mobile Host to do its own decapsulation.
In this case, the MH must acquire a temporary IP address on the foreign
network (e.g., using DHCP) to be used for forwarding. This allows a mobile host
to receive datagrams away from its home network even in the absence of a
Foreign Agent. The downside of this approach is the kernel on the MH must
now be modified to handle encapsulated datagrams.

https://secure2.linuxjournal.com/ljarchive/LJ/028/1271f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1271f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1271f3.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1271f3.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1271f3.html

The steady increase in the sales of portable computers is indicative of a
growing base of mobile users. IETF's proposed Mobile-IP standard will facilitate
inter-operation between mobile devices designed by different vendors and
further contribute to the popularization of mobile computing. Our research
group at the State University of New York at Binghamton has developed a
Mobile-IP implementation for Linux. This software and related documentation
can be downloaded from the Linux Mobile-IP home page at http://
anchor.cs.binghamton.edu/~mobileip/. The page also contains links to other
Linux and portable computing resources.

All three authors are affiliated with the Department of Computer Science at the
State University of New York, Binghamton. They can be reached at
mobileip@anchor.cs.binghamton.edu.

Benjamin Lancki is an undergraduate student completing his senior year of
study. His interests include mobile networking, multimedia software design,
and pencil sketching.

Abhijit Dixit is a graduate student working towards a Masters degree. His
interests include mobile networking and operating systems.

Vipul Gupta is an Assistant Professor whose interests include parallel
processing and computer networks.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://anchor.cs.binghamton.edu/~mobileip
http://anchor.cs.binghamton.edu/~mobileip
mailto:mobileip@anchor.cs.binghamton.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Graphing with Gnuplot and Xmgr

Andy Vaught

Issue #28, August 1996

If you need to graph data, there are two packages available for Linux under X:
Gnuplot and Xmgr.

Graphing data is one of the oldest uses for a computer, dating back to
FORTRAN programs producing character graphics on line-printers. Fortunately,
things have advanced somewhat, and modern computers are capable of
producing much nicer graphs. Several graphing packages are available for
Linux under X and SVGALIB. Two of the most prominent packages are gnuplot
and xmgr (a.k.a. ACE/gr). Xmgr is oriented towards graphing and manipulation
of externally produced data sets, while gnuplot is used more for plotting data
and mathematical functions.

Gnuplot's primary authors are Thomas Williams and Colin Kelley, with many
others contributing. Although gnuplot was written independently of the Free
Software Foundation, the FSF does distribute it. Gnuplot was written with
portability in mind, supporting about four dozen output devices and formats
under a dozen operating systems. Under Linux, it will run under both X and
SVGALIB. Modifying gnuplot to support a new device involves writing a few
device-dependent subroutines that are linked in with the main program.

Xmgr, on the other hand, is tied to X. Developed by Paul Turner, it also runs on
many platforms besides Linux, but it outputs only PostScript. In the latter
stages of development, Linux was the primary development platform.
Development has recently been spread around to a loose organization of
interested people.

Gnuplot

Gnuplot has a command-line interface with a mixture of emacs and Unix
command line editing similar to the bash shell. Gnuplot may be run in batch
mode, where the commands are taken from a file. The plot command causes a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

plot to be sent to the currently selected device. In the case of the Linux svgalib
driver, a graphics mode is selected and a graph is drawn in the current virtual
console. When a key is hit, the display changes back to text mode for an
additional command. Under X, a new window is created for the graph, while
commands are entered in the original shell window.

Gnuplot has a comprehensive on-line help facility that can be accessed by
typing help. The basic help command lists arguments of the help command by
topic. Some subjects, like the set command, have many sub-topics. The
documentation itself is well written and has many valuable examples of
working commands.

A datafile containing points to plot is identified by the file name in single or
double quotes. Each line has a two or more space-separated numbers that
correspond to a point that is to be plotted. For example, suppose we had a file
named “hits”:

Monthly hits on our web site
1 13
2 23
3 66
4 75
5 74
6 82
7 377
8 442
9 512
10 756
11 874
12 946

The command plot "hits" would plot a graph of the data in the file named hits.
Lines in a data file beginning with a # character are treated as comment lines.
Blank lines are not treated as comments. Instead, they indicate where a line
should not be drawn between a pair of points.

Although our example has the x data listed in the first column and the y in the
second, gnuplot can handle cases where this is not so. The command:

plot "hits" using 2:1

would cause the x data to be read from the second column and the y data from
the first column.

Plots can be embellished in many ways. Each comma-separated file or
mathematical expression (shown later) to plot has two attributes that can be
specified by the user: a title and a style. A gnuplot “title” is a string that is
displayed with an example of the plot style that labels that data; this is usually
called a “legend” by other programs. The style of the plot is selected from
several possible ones, including “points”, which displays a symbol at each data

point, “lines”, which draws lines between the points, and “linespoints”, which
draws both the lines and the symbols. The color of the line and symbol as well
as the type of symbol (plus sign, cross, box) are normally assigned in series by
gnuplot to make each distinct, but these can be overridden by the user.

For example, the command plot "hits" title 'Hits on Website' with linespoints 3 4

plots our data file using lines of type 3 and points of type 4. At the top right will
be the string Hits on Website next to a short example of type 3 lines and type 4
points. What you actually see depends on the output device being used—lines
that are colored on a color display can come out dashed and dotted on
monochrome devices (like most PostScript printers).

Our plot is looking better, but it is still not perfect. We want to put labels on the
x and y axes to further clue the reader in on what we are looking at. Axis labels
are setable parameters, as is the graph title:

set xlabel "Month"
set ylabel "Hits"
set title "Hits on the Website"
replot

Experimentation is easy to do in gnuplot by using the replot command, which
repeats the previous plot command. Not only does this save keystrokes, but the
author has a friend who likes to type replot repeatedly to display a file being
appended to by another job he is running, which gives a running display of
results as they are calculated.

Our graph is almost finished. Gnuplot's default algorithm for deciding where
the x tick marks appear is showing only every other x point. We can make it
show them all by:

set xtics 1, 1
replot

The first number causes the tick marks to start at x=1, and the second causes
them to be spaced one unit apart. We could have included a third comma-
separated parameter to indicate where the last tick mark should be plotted, but
it is unnecessary in our example.

We can do better than month numbers:

set xtics ("Jan" 1, "Feb" 2, "Mar" 3, "Apr" 4,
 "May" 5, "Jun" 6, "Jul" 7, "Aug" 8, "Sep" 9,
 "Oct" 10, "Nov" 11, "Dec" 12)
replot

We have arrived at a graph worthy of being shown to the boss. The result is
shown in Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f1.html

All that remains is to print it out. Gnuplot treats printers and plotters as just
another output device. Executing the command:

set terminal PostScript

tells gnuplot to generate PostScript of the graph instead of console graphics. It
is not enough to set the type of terminal. Typing replot now will cause gnuplot
to spew PostScript to the user terminal. The command:

set output "graph.ps"
replot

will cause PostScript to be sent to the file graph.ps. If the first character of the
filename is a vertical bar, gnuplot interprets the rest of the string as a program
that will accept gnuplot's output as its standard input. So a command like:

set output "|lp"
replot

sends the output to the system's default printer.

Plots of mathematical functions are easy to produce: plot 2*x will produce a
plot of a line with a slope of two on the default range of -10.0 to +10.0. The y-
axis is automatically scaled by default so that all points are visible. For a
mathematical function, the x range is taken from a default range. Multiple plots
can be overlaid, with separate expressions separated by a comma.

A wide variety of common mathematical functions can be used in expressions
—trigonometric, exponential and logarithmic as well as less common functions
such as bessel functions and error functions. Expressions are based mostly on
C-style expressions including the logical AND (&&) and OR (||) operators with
the notable addition of the FORTRAN power operator (**).

Ranges are specified by a pair of numbers separated by a colon enclosed in
square braces. Either or both numbers may be omitted to avoid affecting the
current default. The first number specifies the range to begin and the second
specifies the end. If we wanted to look at several graphs with the same range,
the default range can be changed with the command set xrange [1:2]. If we
wanted to change the range in only one plot, a range can be specified before
the first function being plotted.

Advanced Gnuplot

Three dimensional surfaces can be generated with the splot command, which
has syntax almost identical to plot. An additional range specifies the range of
the y variable and the set view command lets the user control the orientation of
the plot in space. A simple example would be:

splot x*x-y*y title "Hyperbolic Paraboloid"

Gnuplot also supports hiding lines that are behind other lines with the
hidden3d parameter: set hidden3d.

Gnuplot can plot “parametric” functions. A parametric function is one in which
both the x and y coordinates are functions of a third variable, which in Gnuplot
is t. For example:

set parametric
plot 2*sin(t), 2*cos(t)

produces a circle of radius 2. The command:

set trange <range>

sets the values of t that are evaluated. Parametric plots are also valid while
doing a three-dimensional splot. In this case, the independent variables under
gnuplot are u and v.

Gnuplot can also take data points from the standard output of a Unix
command specified on gnuplot's command line. This allows the display of
points generated from almost any source. The command should be specified
like a filename, preceded by a < character.

Xmgr

Xmgr is oriented more towards plotting data created from an external source,
as opposed to plotting a given mathematical function. Xmgr normally reads
files, but can also take input piped from its standard input. Once data has been
read into an xmgr set, it can be displayed, scaled, and manipulated in many
ways.

Xmgr also has an on-line help. When the “help” menu is selected, xmgr runs
your favorite HTML browser (Mosaic by default) with the xmgr documentation
as input. Several sites on the internet have this page on-line. If you don't have a
browser, you end up having to read raw html. Having a program's
documentation as a hypertext document is quite nice, as you can jump from
subject to subject as well as being able to do text searches. A gallery of graphs
produced by xmgr is also included with the xmgr distribution, which gives the
user a visual look at the wide range of effects possible with xmgr.

The first step in graphing some data is to read the data into xmgr. The “Read
Sets...” option under “File” produces a file browser from which a file can be
selected. Several types of data can be read in, but the two column “XY” format is
the most common. The format of the data is much the same as in gnuplot—

individual points on lines by themselves separated by spaces or tabs. Lines
beginning with # are also considered comment lines, and lines without numeric
data (like a blank line) separate sets. Lines beginning with the @ symbol can
control the actions of xmgr separately from the user.

Xmgr data sets are somewhat like registers, in that only a fixed number are
available (fixed at compile time), and they are referred to by number. Once the
data is in a set, it is displayed immediately. The left hand side of the xmgr
window contains a number of buttons that provide shortcuts for various
operations.

Most of the shortcut buttons let the user change the appearance of the graph
interactively. A set of four arrow buttons scrolls the data in all four directions—
tick marks and tick labels are automatically updated. The “Z” and “z” buttons
allow uniform zooming in and out. Arbitrary zooms in are accomplished by
using the magnifying glass button. This prompts the user for a rectangle that
becomes the new limits of the graph. A text line at the top of xmgr's window
constantly displays the current position of the mouse, in the coordinates of the
graph. A crosshair extending the length and breadth of the window may be
toggled to help position the mouse within a pixel of the desired point.

The “autoO” button provides an autoscaling feature. The cursor changes to a
crosshair, which when clicked at some point selects the set nearest to the
clicked point. The graph is rescaled such that all points in this set are visible.
The “autoT” button immediately rescales the tick marks that can get cramped
while doing a zoom.

Each data set has several attributes that control how the set is displayed—
which symbol is used for points, the color of the symbol, whether the symbols
are connected by lines or not, the color and style of the lines, the legend
associated with the data set, and more. One rather packed menu controls all
these options.

The user has a great deal of control over how the graph is displayed. Major and
minor tick marks chosen by xmgr can be overridden. Simple box and line
graphics as well as text strings can be drawn at arbitrary locations. All strings
can be displayed in a variety of fonts and sizes, with subscripts, superscripts
and some special characters available.

To repeat the earlier example using gnuplot, Figure 2 shows the xmgr display
immediately after loading the hits file. Figure 3 shows the symbols and legends
menu used to control the appearance of the set and the set's legend
respectively, while Figure 4 shows the results. Figure 5 shows us getting ready
to fix the X-axis by replacing the numbers with month names with the result in

https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f3.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f4.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f5.html

Figure 6. Figure 7 is after the final touch-up, adding a title, giving the Y-axis a
name, getting rid of the tenths digit in the tick labels and expanding the X-axis
to fill the entire bottom of the graph. Figure 8 is the final PostScript output.

Advanced Xmgr

Once it is in an internal set, the data can be manipulated in many ways. Sets
may be edited, deleted, and saved. Arbitrary mathematical functions can be
typed in to transform one set to another. Regression, sometime referred to as
“curve-fitting”, can be done on a variety of standard curves—polynomial,
logarithmic and exponential. Histograms can be created from sets with user-
definable bin widths. Many other mathematical operations are supported.
Individual data sets (as well as complete graphs) can be saved and loaded.

Xmgr also allows the user to define “regions” entered as polygons determined
by mouse clicks. Data points within a region can be extracted from data sets
into other data sets or removed from data sets. The regression options may
also be set to operate only on the inside or outside of a particular region.

More Information

Gnuplot has its own Usenet newsgroup, comp.graphics.gnuplot. The current
version is 3.5. Gnuplot can be downloaded from Gnu ftp sites like
prep.ai.mit.edu and its mirrors.

The gnuplot 3.5 distribution comes with a tutorial written in LaTeX. The regular
gnuplot documentation can be compiled into several different formats, one of
which is the on-line help file. Other formats are a VMS .hlp file, a TeX document,
nroff/troff format and an .rtf rich-text format. A man page is also provided,
which talks about invocation options and X-resources that are used.

The current version of xmgr is 3.01. Xmgr has a home page located at
www.teleport.com/~pturner/acegr/index.html. FAQs, on-line documentation,
source and binaries are there. Other pages still have some dangling pointers to
the old xmgr home page at ogi.edu, where the mailing list is still hosted.

Andy Vaught (ayndy@maxwell.la.asu.edu) is currently a graduate student in
physics at Arizona State University and works part-time for Motorola. When not
logged in, he enjoys bicycling, skiing and golf. He is also active in the civil air
patrol.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f6.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f7.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/1218f8.html
http://www.teleport.com/~pturner/acegr/index.html
mailto:ayndy@maxwell.la.asu.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Certifying Linux

Heiko Eissfeldt

Issue #28, August 1996

Certifying Linux to POSIX 1.1.

Standards

Part of the success of Linux is due to its commission to standards. One of the
first standards for Unix-like operating systems was POSIX.1 (IEC/ISO
9945-1:1990 or IEEE Std. 1003.1-1990), which specifies the system services, the
interface and system limits. It has been adopted by all major Unix vendors
since its introduction. Higher levels like XPG4 from X/Open (a group of
computer vendors) are upwardly compatible with POSIX.1. Finally, once an
operating system is branded for Single Unix (or Spec 1170) it may be officially
named Unix (TM) (a name which is controlled by X/Open).

Fortunately the design of Linux was aimed at POSIX.1, so nearly all necessary
functionality had been implemented from the beginning; however, it needed
testing.

Goal

Our primary goal at Unifix was a standard called Federal Information
Processing Standard (FIPS) 151-2 from the National Institute of Standards and
Technology (NIST), a U.S. Government institute. FIPS 151-2 requires some
features that are optional in POSIX.1; thus, FIPS 151-2 includes POSIX.1 and
more. We intended to get a certification for Linux on Intel platforms.

Where to Start?

Although usually linked to programming languages, ANSI-C (ISO/IEC 9899:1990)
is a must for FIPS 151-2, and this was the first standard to meet. Rüdiger Helsch
from Unifix began to clean up header files (namespace pollution issues) and fix
the math library to ensure full ANSI-C conformance. Testing was done using our
own tools.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

FIPS 151-2 at Unifix

In Fall 1995 we acquired the test suite for FIPS 151-2 from NIST. The test
procedures are defined in IEEE Std 1003.3-1991 and 2003.3-1992. The first
differences were found when compiling the test programs. At a later stage the
generated reports showed where tests had failed. In the following months we
did a lot of kernel, libc and test program recompiles (more than 80 kernel
compiles). Don't try that on a 386 SX with 4 megs! Most fixes had to be done in
exit.c and in the termios package. After roughly 250 fixes in our system, and
two fixes in the test programs, NISTs bin/verify reported no more non-
compliant behaviour. We felt some pride at that point but were not finished
yet. Rüdiger wrote the mandatory POSIX Conformance Document, where all
system limits and characteristics are specified. Hint: there is an easy way to
check for POSIX.1 compliance; a system without these docs is never compliant.

FIPS 151-2 in the Independent Testing Laboratory

Unifix is located in Braunschweig, Germany. and our independent testing
laboratory is located in the U.S. So we had to transfer our modified Linux along
with instructions for setting up a test PC to reproduce our test results. The lab
did a completely new testing and is responsible for compliance afterwards.
They were not allowed to use any pre-run test results, so everything had to be
done from scratch. After some long-distance calls, all configuration mismatches
had been ironed out (the very last problem was a suitable serial loopback
cable), and the tests ran successfully. We entered the product at that point
under the name Linux-FT and our newly founded company as Open Linux Ltd.
(an X/Open member).

The Official Acknowledgement

To see that all went well, we e-mailed to POSIX@nist.gov with topic send

151-2reg. The mailrobot returned a list with all certified products, one of which
was our system.

Was it worth it? It took considerable money and effort to get to this point. Our
partner from the UK, Lasermoon, supported us financially and logistically. We
are convinced we have gained much more stability and portability through the
certification process. Signal handling improved considerably. A lot of small
quirks and flaws scattered throughout the sources have been fixed. Most of
those ugly #ifdef linux hacks in applications are disappearing. For application
developers and porters these advantages are obvious. Linux-FT is now available
and contains all source code (as ensured by GPL).

And Beyond?

Yes, we will do more certifications. POSIX.2 and XPG4 Base are the next stages,
and finally the Single Unix branding. We are currently working on them and we
hope our current product will enable us to reach XPG4 certification this
summer. In the long term we intend our POSIX.1 changes to flow back into the
mainstream kernels and libs (see the math lib, for example). The Linux 2.0
kernel sources will probably be run through our test suite before release.

Heiko Eifeldt (heiko@unifix.de) works at Unifix GmbH, Braunschweig, Germany.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:heiko@unifix.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Michael K. Johnson

Issue #28, August 1996

Readers sound off.

SPARC?

I was a SPARC user until I encountered a hardware problem. I found it difficult
to get service for the SPARC hardware; small site end users don't get much
support from SUN, it seems.

The Linux/x86 world is just the opposite. There is a very competitive market
offering a wide variety of options in all price/performance ranges. It creates a
truly affordable Unix computing system.

I wish the Linux community would stay with x86 instead of making Linux just
another piece of software on those expensive proprietary boxes.

—Siuki Chan siuki.chan@xilinx.com

Why Not?

When Unix was first written it was for a PDP-7 (and written in assembly
language). Subsequent ports to additional hardware helped turn Unix into the
machine-independent system it is today. Associated with the 25-year history of
Unix and its machine-independence has been additional overhead.

Linux offers a fresh start. Porting Linux to other architectures can bring a new
machine-independent operating system into general use. While many people
today see the x86 as the right answer I am sure people felt the same way about
the PDP-11 (which was the second platform for Unix). Designing portability into
Linux now means it will be much easier to get running on the hardware of the
future—whether it be based on the SPARC, DEC Alpha, MIPS or something
totally new.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:siuki.chan@xilinx.com

—Haykel Ben Jemia haykel@cs.tu-berlin.de

AWKward mistake

I would like to say that I really like LJ and that through it I learn something new
about Linux every month. In issue 25 (May 1996), I found the article
Introduction to Gawk very interesting because I often use Gawk. But when
trying things out, I noticed something wrong with the output of the FS

statement. The article stated that

{
 FS=":"
 print $5
 }

and

BEGIN {
 FS=":"
}
{
 print $5
}

are functionally identical, except that the first one is slower.

But when I executed the first program, the first line was blank. With the second
program, everything was okay. So I asked on the Red Hat mailing list (because I
use the Red Hat distribution) if someone could help me. Marc Ewing provided
the real answer to the problem:

The line is split into fields before the rule is evaluated, so when the FS=":" is
evaluated the first time, the line has already been split up, and either no fifth
field exists, or in some situations the fields are wrong. So the two awk
programs are not functionally identical; the first program is incorrect.

I hope this information will be useful for someone.

Oops

That was tested before being put in the magazine, but the bug was hard to
notice (and was missed) because the /etc/passwd file on the machine used to
test the script ran the output off the top of the screen. Thanks for bringing this
to our attention.

lcc for ELF?

In Issue 25 of Linux Journal, the lcc compiler was reviewed [Introduction to Awk,
by Ian Gordon] and the FTP site for lcc was listed as ftp://ftp.cs.princeton.edu/

mailto:haykel@cs.tu-berlin.de

pub/lcc/. However, I can only find a.out ports of lcc to Linux. Is anybody working
on ELF support in lcc?

—Arthur D. Jerijian

Yes

The file ftp://ftp.cs.princeton.edu/pub/lcc/contrib/linux-elf.tar.gz is dated
November 14th, 1995, so Linux ELF support for lcc has been around for a while.

More AWKward mistakes

To the editor:

I would like to comment on the article on gawk {An Introcution to Awk] by Ian
Gordon in the May Linux Journal. Overall it is a nice introduction to the joys of
awk programming, but I wish you had let me review it first.

There are a number of minor and not so minor errors in the article. In order of
appearance:

1. Brian Kernighan wasn't one of the original designers of C; he “merely” wrote
the book on it with Dennis Ritchie, who designed and implemented C. (Not to
diminish his stature in any way; Brian is still a very important and seminal
figure in the Unix and C world.)

2. The article says, “gawk also defines several special patterns wich do not
match any input at all, the most commonly used being BEGIN and END”. This is
incorrect. Only BEGIN and END are defined in awk, there are no others.

3. The statement “If you try to refer to fields beyond NF, their value will be
NULL”, if read literally, is misleading. The value is the null or empty string, often
denoted "". Granted, most programmer types would understand the statement
at face value, maybe I'm just being pedantic.

4. There is a major error in the part that describes using a colon as the field
separator.

 {
 FS = ":"
 print $5
 }

In gawk, field splitting occurs using the value of FS at the time the record was
read. Thus, $5 will already have been determined, based on the previous value
of FS (presumably a space, " "). Unix versions of awk do this incorrectly, delaying
field splitting until a field is needed, but doing so with whatever value of FS is

current. This is incorrect, and the POSIX standard for awk mandates that field
splitting happen the way gawk (and mawk, see below) do it. In fact, my book
(cited in the RESOURCES sidebar, thanks!) describes this exact issue.

The correct way to get the desired behaviour is to set FS either using the -F
option, or using an assignment inside the BEGIN block, as mentioned later.

5. Some typos: “does not contain a seven field” should be “seventh”, and
“modifing” should be “modifying”. And a nit. Calling the Info file a “page” is
misleading. When printed, the current documentation is over 330 pages...

6. When talking about variable initialization, the article says “... setting it to 0 for
an integer or "" for an integer or a string, respectively.” Not quite. Variables are
initialized to 0 for their numeric value and "" for their string value. All numbers
in awk are maintained internally as C double's. Numbers that look like integers
are still stored as doubles. This can lead to confusion for C programmers:

 x = 5 / 4 # x is now 1.25, not 1, no integer truncation

(I've been bitten by this one, myself!)

7. The discussion of the array “for” loop is incomplete.

 for (i in theArray) print i

prints each index in theArray. To get both the indices and the corresponding
values, you would need something like 8.

 for (i in theArray) print i, theArray[i]

A word about implementation speed and comparisons to Perl. There are three
freely available awk implementations: the Bell Labs version, gawk, and mawk.
Gawk is much much faster than the Bell Labs version. Mawk (ftp from oxy.edu),
by Michael Brennan, is a very nice implementation that is (generally) even
faster than gawk. Although I haven't done any timings, I'm willing to bet that an
awk program run with mawk will give a comparable Perl program a really good
run for its money, every time. Gawk's advantages over mawk are its additional
features, its ports to more systems, and its comprehensive documentation.
Mawk's advantages are its speed and rock solidness.

9. In the resource block, the title of the gawk documentation from the FSF is
now The GNU Awk User's Guide, with just myself listed as the author. Because
the manual changed significantly (it's now about double the previous size), we
changed the title, and I am listed as the author because of all the new and
heavily revised material in the guide. The title page does give credit where

credit is due, saying “Based on The Gawk Manual, by Close, Robbins, Rubin and
Stallman.”

Finally, I would like to point out that many Linux distributions apparently don't
yet have the latest version, 3.0.0; this should be gotten from a GNU mirror.
There are a large number of nifty new features and bug fixes over the previous
version, as well as the revised manual.

Please accept this note as constructive comments on an otherwise enjoyable
article, one that I wish I had had time to write...

Thanks,

—Arnold Robbins gawk maintainer and documenter arnold@gnu.ai.mit.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:arnold@gnu.ai.mit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Version 2.0

Michael K. Johnson

Issue #28, August 1996

The long-awaited Linux 2.0 is about to be released. What's new? Plenty.

As I write, the final touches are being put on Linux version 2.0. By the time you
read this, it probably will have been released, and vendors will be working on
distributions which include it. Do you want to upgrade?

If you have hardware that was not supported by 1.2.12, or not supported well,
you probably have good reason to upgrade to 2.0. But even if your hardware is
supported perfectly well by Linux 1.2, you may still want to upgrade. Linux 2.0 is
fast. Swapping is fast. Under X, windows appear more quickly. X runs more
smoothly. Performance under heavy load is improved. After a few minutes of
version 1.3.100 (almost 2.0...), I was not interested in running version 1.2.13 any
more.

Whether you choose to upgrade by obtaining all the new pieces from the
Internet, or by waiting for your distribution vendor to provide you with a new
version, you probably do want to upgrade.

Getting Started

There is a small price to pay for upgrading: several system utilities need to be
upgraded in order for 2.0 to work. The system will still run with the old
versions, but some functions won't work; in particular, the format of the /proc
filesystem has changed, and the ps utility has to be replaced. Also, in order to
use PPP, a new pppd daemon needs to be installed. But unlike the upgrade
from 1.0.9 to 1.2.13, when we had to publish an article on how to upgrade here
in Linux Journal, Linux 2.0 comes with a files called Documentation/Changes
that tells you exactly what you need to change and where to get the new
versions.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

That's just a taste of the new focus on documentation; the Documentation
directory tree includes documentation on everything from hunting down and
reporting bugs to Linux's support for SMP (symmetric multi-processing:
multiple CPUs in one machine, all sharing the same main memory). There is
also an improved configuration system: it includes both text-based and X-based
menuing systems, with a built-in help system to explain each configuration
choice. Instead of make config, choose make menuconfig or make xconfig.

Improvements

I mentioned improved performance. This is due both to significant
restructuring of memory management and significant improvements in task
scheduling. These work together in several ways to improve both throughput
(the total amount of work that can be done in a certain amount of time) and
interactive response to s user's input (typing, mouse movements, etc.).

Automatic, on-demand loading and unloading of kernel modules is available,
and almost every driver can be compiled as a loadable module, saving precious,
unswappable kernel memory. See Auto-loading Kernel Modules elsewhere in
this issue.

SCSI support has also been improved; wide SCSI support now includes all 15
possible devices on supported wide SCSI controllers and SCSI error handling
has been improved. Improved SCSI drivers are available for the BusLogic
MultiMaster series, the Adaptec 2940 series, and the NCR53c8xx series, among
others.

Those of you with IDE have not been ignored—support for several new high-
end IDE interfaces is available, and bug fixes for the buggy interfaces (RZ1000
and CMD640) have been incorporated. Support for IDE tape drives is now
included.

Linux 2.0 includes SMP support for Intel MP-compliant systems. In addition,
some SPARC SMP systems are supported by the experimental Linux/SPARC
source included, as well as improved file locking, including a full
implementation of mandatory file locking. The /proc filesystem has been
expanded and far more system information is available in /proc. A “watchdog”
has been developed especially for unattended systems. This includes software
and optional hardware support for rebooting a hung system.

Networking Improvements

Native AppleTalk networking has been added to Linux's impressive list of
supported networking protocols, and the existing protocols (especially TCP)
were improved. Filesystem support for NCP (Novell) and SMB (MS Lan Manager,

https://secure2.linuxjournal.com/ljarchive/LJ/028/1279.html

etc.) network filesystems has been added. In addition, the NFS filesystem has
been greatly improved in conjunction with the memory management
improvements; it is now as fast or faster than most other implementations. It is
also now possible to keep your root file system on an NFS server, which was
made practical by those changes.

There is also expanded support for network devices: many ISDN cards, some
frame relay cards, and general synchronous networking support to make it
easier to add further synchronous network support. Support for several
100Mbps Ethernet cards, including the popular DEC tulip series and the 3COM
3C590 series, has been added. The improved PPP code now supports “BSD
compression”.

Experimental Features

There are also (clearly marked!) features which are experimental in nature.

More multiple platforms support than ever is included in 2.0. While Linux/Alpha
is now as stable as Linux/i86, experimental support for SPARCs, PowerPCs,
Amigas, Ataris, M68K/VME and a few MIPS-based platforms is also included.

Experimental support for running Java applications as “native binaries” is
available by making them look almost like shell scripts to Linux, running the
proper interpreter automatically when you attempt to run the Java application.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Device Drivers Concluded

George V. Zezschwitz

Issue #28, August 1996

This is the last of five articles about character device drivers. In this final
section, Georg deals with memory mapping devices, beginning with an overall
descriptoin of Linux memory management concepts.

Though only a few drivers implement the memory mapping technique, it gives
an interesting insight into the Linux system. I introduce memory management
and its features, enabling us to play with the console, include memory mapping
in drivers, and crash systems...

Address Spaces and Other Unreal Things

Since the days of the 80386, the Intel world has supported a technique called
virtual addressing. Coming from the Z80 and 68000 world, my first thought
about this was: “You can allocate more memory than you have as physical RAM,
as some addresses will be associated with portions of your hard disk”.

To be more academic: Every address used by the program to access memory
(no matter whether data or program code) will be translated--either into a
physical address in the physical RAM or an exception, which is dealt with by the
OS in order to give you the memory you required. Sometimes, however, the
access to that location in virtual memory reveals that the program is out of
order—in this case, the OS should cause a “real” exception (usually SIGSEGV,
signal 11).

The smallest unit of address translation is the page, which is 4 kB on Intel
architectures and 8 kB on Alpha (defined in asm/page.h).

When trying to understand the process of address resolution, you will enter a
whole zoo of page table descriptors, segment descriptors, page table flags and
different address spaces. For now, let's just say the linear address is what the
program uses; using a segment descriptor, it is turned into a logical address,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

which is then resolved to a physical address (or a fault) using the paging
mechanism. The Linux Kernel Hacker's Guide spends 20 pages on a rather
short description of all these beasties, and I see no chance of making a more
succinct explanation.

For any understanding of the building, administration, and scope of pages
when using Linux, and how the underlying technique—especially of the Intel
family—works, you have to read the Linux Kernel Hacker's Guide. It is freely
available by ftp from tsx-11.mit.edu in the /pub/linux/docs/LDP/ directory.
Though the book is slightly old [that's a gentle understatement—ED], nothing
has changed in the internals of the i386, and other processors looks similar (in
particular, the Pentium is exactly like a 386).

Pages—More Than Just a Sheet of Memory

If you want to learn about page management, either you start reading the nice
guide now, or you believe this short and abstract overview:

• Every process has a virtual address space implemented by several CPU
registers which are changed during context switches (this is the zoo of
selectors and page description pointers). By these registers, the CPU
accesses all the memory segments it needs.

• Multiple levels of translation tables are used to translate the linear
address given by the process to the physical address in RAM. The
translation tables all reside in memory. They are automatically looked up
by the CPU hardware, but they are built and updated by the OS. They are
called page descriptor tables. In these tables there is one entry (i.e., a
“page descriptor”) for every page in the process's address space—we're
talking of the logical addresses, also called virtual addresses.

We concentrate now on a few main aspects of pages as seen by the CPU:

• A page may be “present” or not—depending on whether it is present in
physical memory or not (if it has been swapped-out, or it is a page which
has not yet been loaded). A flag in the page descriptor is used to indicate
this status. Access to a non-present page is called a “major” page fault.
The fault is handled in Linux by the function do_no_page(), in mm/

memory.c. Linux counts page faults for each process in the field maj_flt in
struct task_struct.

• A page may be write-protected—any attempt to write on the page will
cause a fault (called “minor page fault”, handled in do_wp_page() and
counted in the min_flt field of struct task_struct).

• A page belongs to the address space of one task or several of them; each
such task holds a descriptor for the page. “Task” is what microprocessor
technicians call a process.

Other important features of pages, as seen by the OS, are:

• If multiple processes use the same page of physical memory, they are said
to “share” it. The processes hold separate page descriptors for shared
page, and the entries can differ—for example, one process can have write
permission on the page and another process may not.

• A page may be marked as copy on write (grep for COW in kernel sources).
If, for example, a process forks, the child will share the data segments
with the parent, but both will be write-protected: the pages are shared for
reading. As soon as one program writes onto a page, the page is doubled
and the writing program gets a new page; the other keeps its old one, with
a decremented “share count”. If the share count is already one, no copy is
performed when a minor fault happens, and the page is just marked as
writable. Copy-on-write minimizes memory usage.

• A page may be locked against being swapped out. All kernel modules and
the kernel itself reside in locked pages. As you might remember from the
last installment, pages which are used for DMA-transfers have to be
protected against being swapped out.

• Page descriptors may also point to addresses not located in physical RAM,
but rather the ROM of certain peripherals, RAM buffers for video cards
etc., or PCI buffers. Traditionally, on Intel architectures, the range for the
first two groups is from 640 kB to 1024 kB, and the range for the PCI
buffers is above high_memory (the top of physical RAM, defined in asm/

pgtable.h). The range from 640 KB to 1024 kB not used by Linux, and is
tagged as reserved in the mem_map structure. They are the “384k
reserved”, appearing in the first kernel message after BogoMips
calculation.

Virtual memory allows quite beautiful things like:

• Demand-loading a program instead of loading it totally into memory at
startup: whenever you start a program, it gets its own virtual address
space, which is just associated with some blocks on your filesystem and
some space for variables, but the memory is allocated and loading is
performed only when you really access the different portions of the
program.

• Swapping, in case your memory gets tight. This means whenever Linux
needs memory for itself or a program and unused memory gets tight, it
will try to shrink the buffers for the file systems, try to “forget” pages
already allocated for program code that is executed (they can be reloaded

from disk at any time anyway), or swap some pages containing user data
to the swap partition of the hard disk.

• Memory Protection. Each process has its own address space and can't
look at memory belonging to other processes.

• Memory Mapping: Just declare a portion or the whole of a file you have
opened as a part of your memory, by means of a simple function call.

Memory Mapping Example

Here we are. The first assumption you should be able to make when thinking
about mmaping (Memory Mapping; usually pronounced em-mapping) a
character device driver is you have something like a numbered position and
length of that device. Of course, you could count the nth byte in the stream of
characters coming from your serial line, but the mmap paradigm applies much
more easily to devices that have a well-defined beginning and end.

One character “device” that is used whenever you use svgalib or the server is /
dev/mem: a device representing your physical memory. The server and svgalib
use it to map the video buffer of your graphics adaptor to the user space of the
server or the user process.

Once upon a time (am I that old?) people wrote games like Tetris to act on text
consoles using BASIC. They tended to write directly into the video RAM rather
than using the bloody slow means of BASIC commands. That was exactly like
using mmapping.

Looking for a small example to play with mmap(), I wrote a small program
called nasty. As you might know, Arabian writing is right to left. Though I
suppose nobody will prefer this style with Latin letters, the following program
gives you an idea of this style. Note that nasty only runs on Intel architectures
with VGA.

If you ever run this program, run it as root (because you otherwise won't get
access to /dev/mem), run it in text-mode (because you won't see anything when
using X) and run it with a VGA or EGA (because the program uses addresses
specific of such boards). You might see nothing. If so, try to scroll back a few
lines (Ctrl-PageUp) to the beginning of your screen buffer.

/* nasty.c - flips right and left on the
 * VGA console --- "Arabic" display */
include <stdio.h>
include <string.h>
include <sys/mman.h>
int main (int argc, char **argv) {
 FILE *fh;
 short* vid_addr, temp;
 int x, y, ofs;
 fh = fopen ("/dev/mem", "r+");
 vid_addr = (short*) mmap (

 /* where to map to: don't mind */
 NULL,
 /* how many bytes ? */
 0x4000,
 /* want to read and write */
 PROT_READ | PROT_WRITE,
 /* no copy on write */
 MAP_SHARED,
 /* handle to /dev/mem */
 fileno (fh),
 /* hopefully the Text-buffer :-)*/
 0xB8000);
 if (vid_addr)
 for (y = 0; y < 100; y++)
 for (x = 0; x < 40; x++) {
 ofs = y*80;
 temp = vid_addr [ofs+x];
 vid_addr [ofs+x] =
 vid_addr [ofs+79-x];
 vid_addr [ofs+79-x] = temp;
 }
 munmap ((caddr_t) vid_addr, 0x4000);
 fclose (fh);
 return 0;
}

Playing with mmap()

What could you change in the mmap() call above?

You might change the rights for the mapped pages by removing one of the
PROT flags asking for the right to read, write or execute (PROT_READ,
PROT_WRITE, and PROT_EXEC) the data range mapped to the user program.

You might decide to replace MAP_SHARED by MAP_PRIVATE, allowing you to
read the page without writing it (The Copy-on-Write Flag will be set: you will be
able to write to the text buffer, but the modified content will not be flushed
back to the display buffer and will go to your private copy of the pages.)

Changing the offset parameter would allow you to adapt this nasty program to
Hercules Monochrome Adapters (by using 0xB0000 as text buffer instead of
0xB8000) or to crash a machine (by using another address).

You might decide to apply the mmap() call to a disk file instead of system
memory, converting the contents of the file to our “Arabia” style (be sure to fit
the length you mmap and access to the real file length). Don't worry if your old
mmap man page tells you it is a BSD page—currently the question is who
documents the features of Linux rather than who implements them...

Instead of passing NULL as first parameter, you might specify an address to
which you wish to map the pages. Using recent Linux versions, this wish will be
ignored, unless you add the MAP_FIXED flag. In this case Linux will un-map any
previous mapping at that address and replace it with the desired mmap. If you
use this (I don't know why you should), make sure your desired address fits a
page boundary ((addr & PAGE_MASK) == addr).

At last, we have really hit one of the favorite uses of mmap—especially when
you deal with small portions of large files like databases. You will find it helpful
—and faster—to map the whole file to memory, in order to read and write it
like it was real memory, leaving to the buffer algorithms of Linux all the oddities
of caching. It will work much faster than fread() and fwrite().

VMA and other Cyberspaces

The guy who has to care for this beautiful stuff is your poor device driver writer.
While support for mmap() on files is done by the kernel (by each file system
type, indeed), the mapping method for devices has to be directly supported by
the drivers, by providing a suitable entry in the fops structure, which we first
introduced in the March issue of LJ.

First, we have a look at one of the few “real” implementations for such a
support, basing the discussion on the /dev/mem driver. Next, we go on with a
particular implementation useful for frame grabbers, lab devices with DMA-
support and probably other peripherals.

To begin with, whenever the user calls mmap(), the call will reach do_mmap(),
defined in the mm/mmap.c file. do_mmap() does two important things:

• It checks the permissions for reading and writing the file handle against
what was requested to mmap(). Moreover, tests for crossing the 4GB limit
on Intel machines and other knock out-criteria are performed.

• If those are well, a struct vm_area_struct variable is generated for the new
piece of virtual memory. Each task can own several of these structures,
“virtual memory areas” (VMAs).

VMAs require some explanation: they represent the addresses, methods,
permissions and flags of portions of the user address space. Your mmaped
region will keep its own vm_area_struct entry in the task head. VMA structures
are maintained by the kernel and ordered in balanced tree structures to
achieve fast access.

The fields of VMAs are defined in linux/mm.h. The number and content might
be explored by looking at /proc/pid/maps for any running process, where pid is
the process ID of the requested process. Let's do so for our small nasty

program, compiled with gcc-ELF. While the program runs, your /proc/pid/maps
table will look somewhat like this (without the comments):

/dev/sdb2: nasty css
08000000-08001000 rwxp 00000000 08:12 36890
/dev/sdb2: nasty dss
08001000-08002000 rw-p 00000000 08:12 36890
bss for nasty
08002000-08008000 rwxp 00000000 00:00 0

/dev/sda2: /lib/ld-linux.so.1.7.3 css
40000000-40005000 r-xp 00000000 08:02 38908
/dev/sda2: /lib/ld-linux.so.1.7.3 dss
40005000-40006000 rw-p 00004000 08:02 38908
bss for ld-linux.so
40006000-40007000 rw-p 00000000 00:00 0
/dev/sda2: /lib/libc.so.5.2.18 css
40009000-4007f000 rwxp 00000000 08:02 38778
/dev/sda2: /lib/libc.so.5.2.18 dss
4007f000-40084000 rw-p 00075000 08:02 38778
bss for libc.so
40084000-400b6000 rw-p 00000000 00:00 0
/dev/sda2: /dev/mem (our mmap)
400b6000-400c6000 rw-s 000b8000 08:02 32767
the user stack
bfffe000-c0000000 rwxp fffff000 00:00 0

The first two fields on each line, separated by a dash, represent the address the
data is mmaped to. The next field shows the permissions for those pages (r is
for read, w is for write, p is for private, and s is for shared). The offset in the file
mmaped from is given next, followed by the device and the inode number of
the file. The device number represents a mounted (hard) disk (e.g., 03:01 is /
dev/hda1, 08:01 is /dev/sda1). The easiest (and slow) way to figure out the file
name for the given inode number is:

cd /mount/point
find . -inum inode-number -print

If you try to understand the lines and their comments, please notice that Linux
separates data into “code storage segments” or css, sometimes called “text”
segments; “data storage segments” or dss, containing initialized data
structures; and “block storage segments” or bss, areas for variables that are
allocated at execution time and initialized to zero. As no initial values for the
variables in the bss have to be loaded from disk, the bss items in the list show
no file device (“0” as a major number is NODEV). This shows another usage of
mmap: you can pass MAP_ANONYMOUS for the file handle to request portions
of free memory for your program. (In fact, some versions of malloc get their
memory this way.)

Your Turn

When your device driver gets the call from do_mmap(), a VMA has already been
created for the new mapping, but not yet inserted into the task's memory
structure.

The device driver function should comply to this prototype:

int skel_mmap (struct inode *inode,
 struct file *file,
 struct vm_area_struct *vma)

vma->vm_start will contain the address in user space to be mapped to. vma-

>vm_end contains its end, the difference between these two elements
represents the length argument in the original users call to mmap(). vma-

>vm_offset is the offset on the mmaped file, identical to the offset argument
passed to the system call.

Let's explore how the /dev/mem driver performs the mapping. You find the
code lines in drivers/char/mem.c in the function mmap_mem(). If you look for
something complicated, you will be disappointed: it calls only
remap_page_range(). If you want to understand what happens here, you really
should read the 20 pages from the Kernel Hacker's Guide. In short, the page
descriptors for the given process address space are generated and filled with
links to the physical memory. Note, the VMA structure is for Linux memory
management, whereas the page descriptors are directly interpreted by the CPU
for address resolution.

If remap_page_range() returns zero, saying that no error has occurred, your
mmap-handler should do the same. In this case, do_mmap() will return the
address to which the pages were mapped . Any other return value is treated as
an error.

A Concrete Driver

It will be difficult to give code lines for all possible applications of the mmap
technique in the different character drivers. Our concrete example is of a
laboratory device with its own RAM, CPU and, of course, analog to digital
converters, digital to analog converters, digital inputs and outputs, and clocks
(and bells and whistles).

The lab device we dealt with is able to sample steadily into its memory and
report the status of its work when asked via the character channel, which is an
ASCII stream-like channel. The command-based interaction is done via the
character device driver we implemented and its read and write calls.

The actual mass transfer of data is done independently from that: by sending a
command like TOHOST interface address, length, host address,
the lab device will raise an interrupt and tell the PC it wants to send a certain
amount of data to a given address at the host by DMA. But where should we
put that data? We decided not to mix up the clear character communication
with the mass data transfer. Moreover, as the user could even upload its own
commands to the device, we could make no assumptions about the ordering
and the meaning of the data.

So we decided to hand full control to the user and allow him to request DMA-
able memory portions mapped to the user address space, and check every
DMA request coming from the lab device against the list of those areas. In
other words, we implemented something like a skel_malloc and skel_free by

means of ioctl() commands and disallowed any transfer to any other region in
order to keep the whole thing safe.

You might wonder why we did not use the direct mmap(). Mostly, because
there is no equivalent munmap. Your driver will not be notified when the
mapping to the open file is destroyed. Linux does it all by itself: it removes the
vma structure, destroys the page descriptor tables and decreases the reference
count for the shared pages.

As we have to allocate the DMA-able buffer by kmalloc(), we have to free it by
kfree(). Linux won't allows us to do so when automatically unmapping the user
reference, but without the user reference, we don't need the buffer any more.
Therefore, we implemented a skel_malloc() which actually allocates the driver
buffer and remaps it to the user space as well, and skel_free() which release
that space and unmaps it (after checking if a DMA-transfer is running).

We could implement the remapping in the user library released with our device
driver by the same means used by the nasty program above. But, for good
reason, /dev/mem can be read and written only by root, and programs
accessing the device driver should be able to run as normal user, too.

Two tricks are used in our driver. First, we modify the mem_map array telling
Linux about the usage and permissions of our pages of physical memory.
mem_map is an array of mem_map_t structures, and is used to keep
information about all the physical memory.

For all allocated pages we set the reserved flag. This is a quick and dirty
method, but it reaches its aim under all Linux versions (starting at least at
1.2.x): Linux keeps its hands off our pages! It considers them as if they were a
video buffer, a ROM, or anything else it can't swap or release into free memory.
The mem_map array itself uses this trick to protect itself from processes
hungry for memory.

The second trick we use is quickly generating a pseudo file which looks
something like an opened /dev/mem. We rebuild the mmap_mem() call from
the /dev/mem driver, especially because it is not exported in the kernel symbol
table and simply apply the same small call to remap_page_range().

Moreover, DMA-buffers allocated by our skel_malloc() call are registered in lists
in order to check whether a request for a DMA transfer is going to a valid
memory area. The lists are also used to free the allocated buffers when the
program closes the device without calling skel_free() beforehand. dma_desc is
the type of those lists in the following lines, which show the code for the ioctl-
wrapped skel_malloc() and skel_free():

/* ===
 *
 * SKEL_MALLOC
 *
 * The user desires a(nother) dma-buffer, that
 * is allocated by kmalloc (GFP_DMA) (continuous
 * and in lower 16 MB).
 * The allocated buffer is mapped into
 * user-space by
 * a) a pseudo-file as you would get it when
 * opening /dev/mem
 * b) the buffer-pages tagged as "reserved"
 * in memmap
 * c) calling the normal entry point for
 * mmap-calls "do_mmap" with our pseudo-file
 *
 * 0 or <0 means an error occurred, otherwise
 * the user space address is returned.
 * This is the main basis of the Skel_Malloc
 * Library-Call
 */
 * ------------------------------
 * Ma's little helper replaces the mmap
 * file_operation for /dev/mem which is declared
 * static in Linux and has to be rebuilt by us.
 * But ain't that much work; we better drop more
 * comments before they exceed the code in length.
*/
static int skel_mmap_mem (struct inode * inode,
 struct file * file,
 struct vm_area_struct *vma) {
 if (remap_page_range(vma->vm_start,
 vma->vm_offset,
 vma->vm_end - vma->vm_start,
 vma->vm_page_prot))
 return -EAGAIN;
 vma->vm_inode = NULL;
 return 0;
}
static unsigned long skel_malloc (struct file *file,
 unsigned long size) {
 unsigned long pAdr, uAdr;
 dma_desc *dpi;
 skel_file_info *fip;
 struct file_operations fops;
 struct file memfile;
 /* Our helpful pseudo-file only ... */
 fops.mmap = skel_mmap_mem;
 /* ... support mmap */
 memfile.f_op = &fops;
 /* and is read'n write */
 memfile.f_mode = 0x3;
 fip = (skel_file_info*)(file->private_data);
 if (!fip) return 0;
 dpi = kmalloc (sizeof(dma_desc), GFP_KERNEL);
 if (!dpi) return 0;
 PDEBUG ("skel: Size requested: %ld\n", size);
 if (size <= PAGE_SIZE/2)
 size = PAGE_SIZE-0x10;
 if (size > 0x1FFF0) return 0;
 pAdr = (unsigned long) kmalloc (size,
 GFP_DMA | GFP_BUFFER);
 if (!pAdr) {
 printk ("skel: Trying to get %ld bytes"
 "buffer failed - no mem\n", size);
 kfree_s (dpi, sizeof (dma_desc));
 return 0;
 }
 for (uAdr = pAdr & PAGE_MASK;
 uAdr < pAdr+size;
 uAdr += PAGE_SIZE)
#if LINUX_VERSION_CODE < 0x01031D
 /* before 1.3.29 */
 mem_map [MAP_NR (uAdr)].reserved |=
 MAP_PAGE_RESERVED;
#elseif LINUX_VERSION_CODE < 0x01033A
 /* before 1.3.58 */

 mem_map [MAP_NR (uAdr)].reserved = 1;
#else
 /* most recent versions */
 mem_map_reserve (MAP_NR (uAdr));
#endif
 uAdr = do_mmap (&memfile, 0,
 (size + ~PAGE_MASK) & PAGE_MASK,
 PROT_READ | PROT_WRITE | PROT_EXEC,
 MAP_SHARED, pAdr & PAGE_MASK);
 if ((signed long) uAdr <= 0) {
 printk ("skel: A pity - "
 "do_mmap returned %lX\n", uAdr);
 kfree_s (dpi, sizeof (dma_desc));
 kfree_s ((void*)pAdr, size);
 return uAdr;
 }
 PDEBUG ("skel: Mapped physical %lX to %lX\n",
 pAdr, uAdr);
 uAdr |= pAdr & ~PAGE_MASK;
 dpi->dma_adr = pAdr;
 dpi->user_adr = uAdr;
 dpi->dma_size= size;
 dpi->next = fip->dmabuf_info;
 fip->dmabuf_info = dpi;
 return uAdr;
}
/* ===
 *
 * SKEL_FREE
 *
 * Releases memory previously allocated by
 * skel_malloc
 */
static int skel_free (struct file *file,
 unsigned long ptr) {
 dma_desc *dpi, **dpil;
 skel_file_info *fip;
 fip = (skel_file_info*)(file->private_data);
 if (!fip) return 0;
 dpil = &(fip-).>dmabuf_info);
 for (dpi = fip->dmabuf_info;
 dpi; dpi=dpi->next) {
 if (dpi->user_adr==ptr) break;
 dpil = &(dpi->next);
 }
 if (!dpi) return -EINVAL;
 PDEBUG ("skel: Releasing %lX bytes at %lX\n",
 dpi->dma_size, dpi->dma_adr);
 do_munmap (ptr & PAGE_MASK,
 (dpi->dma_size+(~PAGE_MASK)) & PAGE_MASK);
 ptr = dpi->dma_adr;
 do {
#if LINUX_VERSION_CODE < 0x01031D
 /* before 1.3.29 */
 mem_map [MAP_NR(ptr)] &= ~MAP_PAGE_RESERVED;
#elseif LINUX_VERSION_CODE < 0x01033A
 /* before 1.3.58 */
 mem_map [MAP_NR(ptr)].reserved = 0;
#else
 mem_map_unreserve (MAP_NR (ptr));
#endif
 ptr += PAGE_SIZE;
 } while (ptr < dpi->dma_adr+dpi->dma_size);
 *dpil = dpi->next;
 kfree_s ((void*)dpi->dma_adr, dpi->dma_size);
 kfree_s (dpi, sizeof (dma_desc));
 return 0;
}

Some Final Words on PCI

Technology develops, but the ideas often remain the same. In the old ISA world,
peripherals located their buffers at the “very high end of address space”--above

640 KB. Many PCI-cards now do the same, but nowadays, this is something
more like the end of a 32-bit address space (like 0xF0100000).

If you want to access a buffer at these addresses, you have to use vremap() as
defined in linux/mm.h to remap the same pages of this physical memory into
your own virtual address space.

vremap() works a little bit like the mmap() user call in nasty, but it's much
easier:

void * vremap (unsigned long offset,
 unsigned long size);

You just pass the start address of your buffer and its length. Remember, we
always map pages; therefore offset and size have to be page length-aligned. If
your buffer is smaller or does not start on a page boundary, map the whole
page and try to avoid accessing invalid addresses.

I personally have not tried this, and I'm not sure if the tricks I described above
on how to map buffers to user space work with PCI high memory buffers. If you
want to give it a try, you definitely have to remove the “brute force”
manipulation of the mem_map array, as mem_map is only for physical RAM.
Try to replace the kmalloc() and kfree() stuff with the analogous vremap() calls
and then perform a second remapping with do_mmap() to user space.

But as you might realize, we've come to an end of this series, and now it is up to
you to boldly go where no Linuxer has gone before...

Good Luck!

George V. Zezschwitz is a 27-year old Linuxer who enjoys late-night hacking and
hates deadlines.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Bandits on the Information Superhighway

Russell King

Issue #28, August 1996

Bandits is not just for new (and not so new) users frightened by the
uncertainties of being on-line; it is also for those who are not yet connected,
who have put off getting net access through fear of the unknown.

Author: Daniel J. Barrett

Publisher: O'Reilly & Associates

ISBN: 1-56592-156-9

Price: $17.95

Reviewer: Danny Yee

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Bandits on the Information Superhighway is the best book yet in O'Reilly's
“What You Need to Know” series, and perhaps an even more valuable
contribution to making the Internet accessible than their classic The Whole
Internet. It is a survey of all the bad things that can happen to you on-line: it
explains what the dangers are and what you can do to minimise them. Bandits
is not just for new (and not so new) users frightened by the uncertainties of
being on-line; it is also for those who are not yet connected, who have put off
getting net access through fear of the unknown.

The eleven chapters of Bandits (not counting the introduction) can be read
independently of one another. The topics covered are privacy (mostly dealing
with e-mail and news rather than computer security in general); get rich
pyramid schemes; other common scams (advertisements dressed up as
ordinary posts, students trying to get others to write their assignments, etc.);
how to avoid paying money for free information; how to buy and sell safely;
Usenet spams, April Fools' day jokes, urban legends, and junk e-mail; net
relationships (particularly romances); looking after children (including some
much needed deflation of media pornography myths); legal issues (what are
your rights?); what to do if you are ripped off (where you can turn for help and
when there isn't anything you can do); and what the future holds for the
Internet.

The format of Bandits, like that of the other “What You Need to Know” books, is
designed to be as friendly as possible: it has short personal anecdotes
(including some from ordinary users) in the margin, separate boxes dealing
with more specialised subjects, and only as much technical material as is
absolutely necessary. But Barrett knows his stuff and the contributors include
such respected Usenetters as Joel Furr and Brad Templeton: not once did I stop
and think “Hey, that's not right” or “That's not the right way of putting that”.

I do think a few improvements could be made to Bandits. It assumes in several
places that users are connecting to a Unix server over an Ethernet (lots of
concern about packet sniffers, and discussion of “finger” and “talk”) rather than
to an ISP using a modem. (Not only are people in the latter class now a majority
of Internet users, but they are the ones who most need Bandits, since they are
less likely to have a system administrator to turn to for advice or reassurance.)
Though lots of URLs are provided as sources for further information, the focus
is heavily on e-mail and Usenet and there is little discussion of the Web itself. (It
would have been useful to explain, for example, that http://www.univ.edu/
admin/ is more likely to be an “official” page than www.univ.edu/~bloggs/
me.html.) And finally, there is nothing on purely intellectual banditry. (Serdar
Argic, for example, was more than just a spammer: it was his complete reversal
of the truth and his creative use of references which really made him
dangerous.) Admittedly the ability to distinguish the respectable and objective

http://www.univ.edu/admin
http://www.univ.edu/admin
http://www.univ.edu/~bloggs/me.html
http://www.univ.edu/~bloggs/me.html

from propaganda and the lunatic fringe is hardly something one can hope to
teach in a chapter, but it would have been nice to see a few guidelines.

Disclaimer: I requested and received a review copy of Bandits on the
Information Superhighway from O'Reilly & Associates, but I have no stake,
financial or otherwise, in its success.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

World Wide Web Journal, Issue One

Danny Yee

Issue #28, August 1996

The range of topics covered is immense.

Author: The World Wide Web Consortium

Publisher: O'Reilly & Associates

ISBN: 1-56592-169-0

Price: $39.95

Reviewer: Danny Yee

I usually only review periodicals after reading a year's worth of issues, but the
first issue of World Wide Web Journal looks more like a book than a journal
(and it has both an ISBN and an ISSN). Also, the journal is a quarterly, but the
first issue consists of the proceedings of an annual conference (the Fourth
International World Wide Web Conference, held in Boston in December 1995),
so the next three issues may be rather different.

Issue one of the World Wide Web Journal contains fifty-nine papers, fifty-seven
from the conference mentioned and two from regional conferences. The range
of topics covered is immense. To list just a few (in no particular order): why the
GIF and JPEG formats aren't good enough for really high quality graphics; low
level security in Java; the results from the third WWW Survey; an analysis of
Metacrawler use; caching systems; a filtering system to provide restricted
access to the Web; a PGP/CCI system for Web security; the Millicent system for
financial transactions involving small sums; smart tokens; and better support
for real-time video and audio. There are also several papers on the use of the
Web in education, on cooperative authoring tools, on Web interfaces to various
database and software systems, and a whole pile of other things.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Though none of them assume specialized knowledge, the papers are mostly
technical presentations of new ideas for systems and protocols: not everyone
who runs a Web server or authors HTML will find them of interest. But anyone
interested in the future of Web technology—either because they are involved in
its development or out of curiosity—should find enough in the World Wide Web
Journal to make it worth seeking out a copy.

Disclaimer: I requested and received a review copy of Issue One of the World
Wide Web Journal from O'Reilly & Associates, but I have no stake, financial or
otherwise, in its success.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Civilizing Cyberspace

Danny Yee

Issue #28, August 1996

Do we face a future where privacy is severely limited, where the divide between
rich and poor has been widened by massive inequalities in access to
information, and where free speech is just a memory?

Author: by Steven E. Miller

Publisher: Addison-Wesley

Reviewer: Danny Yee

Will the United States National Information Infrastructure (NII) be controlled by
a few massive companies, vertically integrated to control production and
distribution of information at all levels? Or will it resemble the current Internet,
where individuals can provide as well as consume information? Do we face a
future where privacy is severely limited, where the divide between rich and
poor has been widened by massive inequalities in access to information, and
where free speech is just a memory? Can we hope for increased accountability
of governments and corporations, a more politically active population, and
educational and economic benefits for everyone? These are the kind of
questions that Steven Miller addresses in Civilizing Cyberspace.

Miller begins with a brief look at what the NII is and some of the different
visions of what it should be. He then surveys the major players in the policy
stakes—state, federal, and local governments, regulatory bodies, cable TV
operators, local and long-distance telephone companies, the mass media, the
computer industry—and the complex relationships between them. This
includes such things as an overview of the various technologies that are likely
to have a role in the NII and a brief history of United States telecommunications
regulation.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

After laying this groundwork, Miller presents the central issues in four chapters.
The first looks at the idea of universal service, explaining what this means in the
context of the NII and what the options for achieving it are. The second is about
the implications of networking for politics, in particular the potential of
universal access to public information, experiments with community free-nets
and electronic democracy, and the importance of free speech. The third tackles
the complex of issues centered around privacy, encryption and civil liberties.
The fourth is about communities: the Internet community, virtual communities,
and the use of networks in building communities. Civilizing Cyberspace closes
with a brief look at the economic implications and possibilities of the NII
(including intellectual property rights) and a summary of the practical actions,
at all levels, that Miller sees as crucial.

The most impressive thing about Miller's book is that it avoids hype,
overstatement, and polemic. Miller is neither a neo-Luddite doomsayer
prophesying disaster, an optimist proffering a technological utopia, or someone
so blinded by their political prejudices that they can't communicate with those
who don't share them. He holds passionate beliefs about his subject—he is a
strong supporter of public broadcasting, government regulation to avoid
monopoly and other evils, civil liberties, government and corporate
accountability, and grassroots democracy, among other things—but he is quite
open about this and he understands that many do not agree with him on these
issues. (He briefly discusses the differing political stances—libertarian,
progressive/radical, liberal, corporate conservative, and state socialist—most
commonly brought to bear on networking policy issues.) Even if you disagree
with his normative suggestions, his book will still be a valuable source of
information.

Civilizing Cyberspace is the best single volume introduction to the policy issues
surrounding the Internet I have seen. Miller says he wrote it for information
technology professionals and non-technical people “piqued by all the talk about
the Information Superhighway”, but I think the most important audience for his
work consists of the politicians and lobbyists actually involved in formulating
policy. (Given the near-unanimous passing of the lunatic Communications
Decency Act since Civilizing Cyberspace went to press, many of these obviously
need to read it.)

While Civilizing Cyberspace is very United States specific, it does consider
international issues in places and its overall message is very relevant in other
countries. It is unlikely that anyone will write such a book specifically about the
situation in Australia, for one thing, and if we can take heed of the
developments in the United States which Miller describes then being a little
behind in the development of legislation about computer networks may not be
such a bad thing...

Disclaimer: I requested and received a review copy of Civilizing Cyberspace
from Addison-Wesley, but I have no stake, financial or otherwise, in its success.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products
Caldera Internet Office Suite
Caldera, Inc. announced Caldera Internet Office Suite, mainstream
business applications with added Internet-aware functionality. The suite's
native Linux applications include Corel's WordPerfect 6.0 for Unix, NCD
Software's Z-mail e-mail package, XESS Software's NExS Spreadsheet,
and Metrolink's Executive Motif Libraries. The suite sells for $329 with
technical support available via email and telephone for a fee.

Contact: Caldera, Inc., 931 West Center Street, Orem, UT 84057 Phone:
801-229-1675 Fax: 801-229-1579 URL: http://www.caldera.com/.

Cosmos Shipping Linux on a Hard Disk
Cosmos Engineering Company is shipping a hard disk upgrade kit with a
Linux and Xfree86 system pre-installed and ready to run. It is designed to
be added to the PC's existing hard drive(s), which allows users to easily
add a robust Linux system to their computers without disturbing their
original work environment. It ships with kernel versions 1.2.13 and
1.3.94. Price: $279.

Contact: Cosmos Engineering Company, 5317 Venice Blvd, Los Angeles,
CA 90019 Phone: 213-930-2540

TEAMate Web/BBS Server for Linux
TEAMate is a server product for Linux that combines both a Web and BBS
interface. Users access a TEAMate server with the Web browser of their
choice, a session-based GUI client for Windows or Mac, a VT100 terminal
or by sending a mail message with an included query. Linux version Price:
$495.

Contact: MMB Development Corporation, 904 Manhattan Avenue,
Manhattan Beach, CA 90266. Phone 800-832-6022 or 310-318-1322. Fax
310-318-2162. E-mail info@mmb.com. URL: http://mmb.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.caldera.com/
MAILTO:info@mmb.com
http://mmb.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Consultants Directory

This is a collection of all the consultant listings
printed in LJ 1996. For listings which changed
during that period, we used the version most
recently printed. The contact information is left as
it was printed, and may be out of date.

ACAY Network Computing Pty Ltd
Australian-based consulting firm specializing in: Turnkey Internet
solutions, firewall configuration and administration, Internet connectivity,
installation and support for CISCO routers and Linux.

Address:
Suite 4/77 Albert Avenue, Chatswood, NSW, 2067, Australia
+61-2-411-7340, FAX: +61-2-411-7325
sales@acay.com.au
http://www.acay.com.au

Aegis Information Systems, Inc.
Specializing in: System Integration, Installation, Administration,
Programming, and Networking on multiple Operating System platforms.

Address:
PO Box 730, Hicksville, New York 11802-0730
800-AEGIS-00, FAX: 800-AIS-1216
info@aegisinfosys.com
http://www.aegisinfosys.com/

American Group Workflow Automation
Certified Microsoft Professional, LanServer, Netware and UnixWare
Engineer on staff. Caldera Business Partner, firewalls, pre-configured
systems, world-wide travel and/or consulting. MS-Windows with Linux.

Address:
West Coast: PO Box 77551, Seattle, WA 98177-0551
206-363-0459
East Coast: 3422 Old Capitol Trail, Suite 1068, Wilmington, DE
19808-6192
302-996-3204
amergrp@amer-grp.com
http://www.amer-grp.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@acay.com.au
http://www.acay.com.au
mailto:info@aegisinfosys.com
http://www.aegisinfosys.com/
mailto:amergrp@amer-grp.com
http://www.amer-grp.com

Bitbybit Information Systems
Development, consulting, installation, scheduling systems, database
interoperability.

Address:
Radex Complex, Kluyverweg 2A, 2629 HT Delft, The Netherlands
+31-(0)-15-2682569, FAX: +31-(0)-15-2682530
info@bitbybit-is.nl

Celestial Systems Design
General Unix consulting, Internet connectivity, Linux, and Caldera
Network Desktop sales, installation and support.

Address:
60 Pine Ave W #407, Montréal, Quebec, Canada H2W 1R2
514-282-1218, FAX 514-282-1218
cdsi@consultan.com

CIBER*NET
General Unix/Linux consulting, network connectivity, support, porting and
web development.

Address:
Derqui 47, 5501 Godoy Cruz, Mendoza, Argentina
22-2492
afernand@planet.losandes.com.ar

Cosmos Engineering
Linux consulting, installation and system administration. Internet
connectivity and WWW programming. Netware and Windows NT
integration.

Address:
213-930-2540, FAX: 213-930-1393
76244.2406@compuserv.com

Ian T. Zimmerman
Linux consulting.

Address:
PO Box 13445, Berkeley, CA 94712
510-528-0800-x19
itz@rahul.net

InfoMagic, Inc.
Technical Support; Installation & Setup; Network Configuration; Remote
System Administration; Internet Connectivity.

Address:
PO Box 30370, Flagstaff, AZ 86003-0370

mailto:info@bitbybit-is.nl
mailto:cdsi@consultan.com
mailto:afernand@planet.losandes.com.ar
mailto:76244.2406@compuserv.com
mailto:itz@rahul.net

602-526-9852, FAX: 602-526-9573
support@infomagic.com

Insync Design
Software engineering in C/C++, project management, scientific
programming, virtual teamwork.

Address:
10131 S East Torch Lake Dr, Alden MI 49612
616-331-6688, FAX: 616-331-6608
insync@ix.netcom.com

Internet Systems and Services, Inc.
Linux/Unix large system integration & design, TCP/IP network
management, global routing & Internet information services.

Address:
Washington, DC-NY area,
703-222-4243
bass@silkroad.com
http://www.silkroad.com/

Kimbrell Consulting
Product/Project Manager specializing in Unix/Linux/SunOS/Solaris/AIX/
HPUX installation, management, porting/software development including:
graphics adaptor device drivers, web server configuration, web page
development.

Address:
321 Regatta Ct, Austin, TX 78734
kimbrell@bga.com

Linux Consulting / Lu & Lu
Linux installation, administration, programming, and networking with IBM
RS/6000, HP-UX, SunOS, and Linux.

Address:
Houston, TX and Baltimore, MD
713-466-3696, FAX: 713-466-3654
fanlu@informix.com
plu@condor.cs.jhu.edu

Linux Consulting / Scott Barker
Linux installation, system administration, network administration,
internet connectivity and technical support.

Address:
Calgary, AB, Canada
403-285-0696, 403-285-1399
sbarker@galileo.cuug.ab.ca

mailto:support@infomagic.com
mailto:insync@ix.netcom.com
mailto:bass@silkroad.com
http://www.silkroad.com/
mailto:kimbrell@bga.com
mailto:fanlu@informix.com
mailto:plu@condor.cs.jhu.edu
mailto:sbarker@galileo.cuug.ab.ca

LOD Communications, Inc
Linux, SunOS, Solaris technical support/troubleshooting. System
installation, configuration. Internet consulting: installation, configuration
for networking hardware/software. WWW server, virtual domain
configuration. Unix Security consulting.

Address:
1095 Ocala Road, Tallahassee, FL 32304
800-446-7420
support@lod.com
http://www.lod.com/

Media Consultores
Linux Intranet and Internet solutions, including Web page design and
database integration.

Address:
Rua Jose Regio 176-Mindelo, 4480 Cila do Conde, Portugal
351-52-671-591, FAX: 351-52-672-431
http://www.clubenet.com/media/index.html/

Perlin & Associates
General Unix consulting, Internet connectivity, Linux installation, support,
porting.

Address:
1902 N 44th St, Seattle, WA 98103
206-634-0186
davep@nanosoft.com

R.J. Matter & Associates
Barcode printing solutions for Linux/UNIX. Royalty-free C source code and
binaries for Epson and HP Series II compatible printers.

Address:
PO Box 9042, Highland, IN 46322-9042
219-845-5247
71021.2654@compuserve.com

RTX Services/William Wallace
Tcl/Tk GUI development, real-time, C/C++ software development.

Address:
101 Longmeadow Dr, Coppell, TX 75109
214-462-7237
rtxserv@metronet.com
http://www.metronet.com/~rtserv/

Spano Net Solutions
Network solutions including configuration, WWW, security, remote

mailto:support@lod.com
http://www.lod.com/
http://www.clubenet.com/media/index.html/
mailto:davep@nanosoft.com
mailto:71021.2654@compuserve.com
mailto:rtxserv@metronet.com
http://www.metronet.com/~rtserv/

system administration, upkeep, planning and general Unix consulting.
Reasonable rates, high quality customer service. Free estimates.

Address:
846 E Walnut #268, Grapevine, TX 76051
817-421-4649
jeff@dfw.net

Systems Enhancements Consulting
Free technical support on most Operating Systems; Linux installation;
system administration, network administration, remote system
administration, internet connectivity, web server configuration and
integration solutions.

Address:
PO Box 298, 3128 Walton Blvd, Rochester Hills, MI 48309
810-373-7518, FAX: 818-617-9818
mlhendri@oakland.edu

tummy.com, ltd.
Linux consulting and software development.

Address:
Suite 807, 300 South 16th Street, Omaha NE 68102
402-344-4426, FAX: 402-341-7119
xvscan@tummy.com
http://www.tummy.com/

VirtuMall, Inc.
Full-service interactive and WWW Programming, Consulting, and
Development firm. Develops high-end CGI Scripting, Graphic Design, and
Interactive features for WWW sites of all needs.

Address:
930 Massachusetts Ave, Cambridge, MA 02139
800-862-5596, 617-497-8006, FAX: 617-492-0486
comments@virtumall.com

William F. Rousseau
Unix/Linux and TCP/IP network consulting, C/C++ programming, web
pages, and CGI scripts.

Address:
San Francisco Bay Area
510-455-8008, FAX: 510-455-8008
rousseau@aimnet.com

Zei Software
Experienced senior project managers. Linux/Unix/Critical business
software development; C, C++, Motif, Sybase, Internet connectivity.

mailto:jeff@dfw.net
mailto:mlhendri@oakland.edu
mailto:xvscan@tummy.com
http://www.tummy.com/
mailto:comments@virtumall.com
mailto:rousseau@aimnet.com

Address:
2713 Route 23, Newfoundland, NJ 07435
201-208-8800, FAX: 201-208-1888
art@zei.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:art@zei.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/028/toc028.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News and Articles
	Columns
	Directories & References
	Beyond Your First Shell Script
	Brian Rice

	Diff, Patch, and Friends
	Michael K. Johnson
	It's not always this easy
	Chunks
	Other formats
	Using Patches
	Other Related Tools

	Auto-loading Kernel Modules
	Preston F. Crow
	What Should Be Compiled as a Module?

	The Cold, Thin Edge
	Todd Graham Lewis
	The Shell
	C
	Mother of Perl
	Tcl/Tk
	Expect
	Smooth Sailing, But Rocks Ahead
	Conclusion

	Basic FVWM Configuration
	John M. Fisk
	Putting It All Together
	Color Customization
	Xcolorsel to the Rescue!
	A Word about Styles

	Mobile-IP: Transparent Host Migration on the Internet
	Benjamin Lancki
	Abhijit Dixit
	Vipul Gupta

	Graphing with Gnuplot and Xmgr
	Andy Vaught
	Gnuplot
	Advanced Gnuplot
	Xmgr
	Advanced Xmgr
	More Information

	Certifying Linux
	Heiko Eissfeldt
	Standards
	Goal
	Where to Start?
	FIPS 151-2 at Unifix
	FIPS 151-2 in the Independent Testing
Laboratory
	The Official Acknowledgement
	And Beyond?

	Letters to the Editor
	Michael K. Johnson
	SPARC?
	Why Not?
	AWKward mistake
	Oops
	lcc for ELF?
	Yes
	More AWKward mistakes

	Linux Version 2.0
	Michael K. Johnson
	Getting Started
	Improvements
	Networking Improvements
	Experimental Features

	Device Drivers Concluded
	George V. Zezschwitz
	Address Spaces and Other Unreal Things
	Pages—More Than Just a Sheet of Memory
	Memory Mapping Example
	Playing with mmap()
	VMA and other Cyberspaces
	Your Turn
	A Concrete Driver
	Some Final Words on PCI

	Bandits on the Information Superhighway
	Russell King

	World Wide Web Journal, Issue One
	Danny Yee

	Civilizing Cyberspace
	Danny Yee

	New Products
	Caldera Internet Office Suite
	Cosmos Shipping Linux on a Hard Disk
	TEAMate Web/BBS Server for Linux

	Consultants Directory

